• AI
    结合AI和区块链技术,律团科技想在百亿法律市场实现去中心化式服务 在律师制度恢复以来的三十多年里,中国法律服务市场的规模发展到了近500亿。据国家统计局数据显示,目前我国律师事务所数量2万家左右,律师工作人员超过23万人。而伴随着人们法律意识的不断增强,法律需求也越来越多,借助技术提升法律服务的便捷、高效性也便成了发展的必然趋势。 律团科技,成立于2016年5月,便是一家以智能客服为切入点,基于AI技术和区块链技术提供法律服务解决方案的科技公司。目前主要面向法律相关领域的B端客户提供SaaS服务,其核心用户包括法律回帖性咨询网站、法律微信公众账号、法律APP端、非法律相关联网站(招聘网、婚介网)等。 事实上,目前法律领域往往存在两方面的缺陷:其一,对于个人而言,鉴于传统律所律师出于整体营收考虑往往追大逐小且服务模式相对单一,客户面对法律问题,除了要支付昂贵的服务费用,对律师的服务质量却也很难评定;其二,对于律师或机构而言,在法律咨询过程中,人工回答经常不能够及时回答问题或非工作时间内不能回答用户问题,从而导致客户流失进而转换率过低的问题。 为此,律团科技以智能问答为切入点,前期将面向B端用户提供全面完整的个人高频法律咨询板块,其中包括了婚姻家庭、交通事故、劳动争议、债权债务、房产纠纷、侵权赔偿、消费争议、合同纠纷、行政诉讼、刑事责任等。从目前来看,该产品可以在3秒内即时性输出用户的法律咨询,可以24小时内不间断咨询服务,同时产品也能够满足用户的个性化、专业化问题解答需求。 关于数据源,一方面,通过技术手段获取相关法律网站的公有数据;另一方面,则通过跟相关领域的合作伙伴深度合作的方式共享数据。截止目前,律团科技已经积累了共计千万的法律咨询问答数据,通过深度学习技术能够自动识别出用户法律咨询问题的分类及预测用户的问题答案。 据赵青山介绍,目前国内大多数的智能法律服务多是基于关键词搜索匹配答案、规则化数据选择答案的技术实现,其主要缺点是不能够穷举用户的个性化智能解答,导致答案正确率低,无法真正的应用到商业化中。相比之下,律团科技主要采用深度学习技术在智能会话中训练模型,目前板块的分类正确率可实现98%,预测正确回答率93%,精准度达到85%,已能够应用到商业化服务。 关于如何盈利,赵青山则表示,基于Saas的服务模式,前期公司会通过API数据调用收取相应的费用;而未来,借助区块链的去中心化、分布式纪录存储、数据不可篡改的技术特性,律团科技则将通过智能化客服进行引流,预测出更多的深度法律服务需求,比如文本服务、案件代理服务、取证服务、见证服务等,从而参与到中间的付费利益分成。 而论及市场竞争,目前基于AI技术提供法律服务的国内外公司,主要以涉及法律检索、文件审阅、案件预测、咨询服务四大领域为主,包括为律师提供辅助工具或是直接面向消费者提供产品服务。比如IBM推出的智能律师ROSS、与用户聊天的律师机器人 “DoNotPay”;国内市场上,法狗狗推出的应用于刑事案件的案情预测系统、定位于人工智能法律咨询机器人的 “法律谷” 、将关联案件分类整理并提供可视化数据服务的 “理脉” 等等。整体来看,这些应用于法律的人工智能仍属于工具的范畴。相比之下,赵青山表示,律团科技以智能问答为切入,更专注于法律领域的垂直细分方向,核心优势在于结合了现有的AI技术和区块链技术提供法律服务。 团队方面,创始人赵青山毕业于哈尔滨工业大学,多年研究自然语言处理及相关法律,主要负责公司产品设计及战略定位;核心成员均为多年同学、同事。目前,公司正处于天使轮投资阶段,预计融资500万,将主要用于产品迭代开发、团队建设、办公运营、市场推广。 来源:36氪 ,作者:无知喵,如若转载,请注明出处:http://36kr.com/p/5082386.html
    AI
    2017年07月17日
  • AI
    用AI代替HR筛选求职简历,Harver获810万美元A轮融资   处理一大摞个人简历的确是一件麻烦的事情。目前市场上有各类评价公司和招聘公司会提供人力资源服务。但有一个事实依然没有改变,阅读简历真的很无聊。 现在想象一下,假如你能通过一种自我训练和优化的机器学习平台来完成这些任务(无需求助任何招聘公司),那画面一定很美好。 Harver就是这样一家公司,昨日它获得了810万美元A轮融资,由Insight Venture Partners领投。这轮融资将帮助Harver推广它的人工智能初步筛选平台。 这个平台能淘汰传统的简历,并且能整合到公司现有的人力资源流程和系统中,还能为招募流程提供预测性分析。 本轮融资将使公司的融资总额达到1140万美元,目前Booking.com、Netflix、Zappos、OpenTable、Casper和Adecco等都是公司的客户,这些客户遍布13个国家。该平台还能以42种语言对候选人进行筛选,最近它还在美国推出了服务。 Harver的工作流程如下。首先候选人要通过一些流程模块来申请工作,包括回答一些关键问题,帮助公司从一开始就了解这是不是它们要招的人,紧跟着还有个性测试、现实生活抉择测试、智力测试、语言测试,还能通过游戏来评估候选人的技能。在整个流程中,Harver的算法会搜集相关数据,并预测候选人能成功胜任工作的可能性。 公司的首席执政官兼创始人Barend Raaff说:“人工筛选简历正在慢慢地被淘汰,因为它无法预测一位候选人在如今大多数工作中的潜在价值。而Harver基于大数据,为公司们提供了一种全自动化的招聘解决方案。” 【猎云网(微信号:ilieyun)】7月3日报道 (编译:叶展盛)
    AI
    2017年07月03日
  • AI
    利用AI让招聘更高效,文本分析公司Textio获2000万美元B轮融资 致力于帮企业提升招聘质量和效率的创业公司 Textio近日宣布,已获得2000万美元B轮融资,由SCAle Venture Partners领投, Bloomberg Beta、Cowboy Ventures、EmerGEnce Capital以及Upside Partnership跟投。 2004年,Textio 在西雅图创立,多年来一直被应用于人才招募。服务模式是:用户将起草好的招聘启事递交给Textio,Textio通过机器学习平台和AI识别这则招聘的语言模式,对其作出评级(百分制,超过90分算合格),从而判断这则招聘的效果。 根据分析结果,Textio还会提供相应建议,即告诉用户使用哪些相似的词或句子能吸引更多人的注意,从而提高合格应征者的比例,加快招聘进度。 Textio 的强大之处在于:拥有强大的自然语言处理能力,除了能分析语言模式外,还能理解手写笔迹的细微差异。 经过几年发展,Textio现已帮助像思科和强生这样的世界500强企业招募更多更好的人才。目前,它每月完成1000万个新工作岗位的文本分析,并利用这些数据来不断改进其分析模型。 经过此轮融资, Textio希望将自己的这项技术运用到其它商业写作领域,譬如销售抵押品、商务谈判、营销策划等。对此,Textio的CEO Kieran Snyder 表示“有太多丰富的可能性”。 在改进自身服务方面,Textio也做了一些努力。“它最困难的部分是将数据中的模式转化为切实可行的指导,并让真正的人采纳。”Snyder认为,“虽然得分是很重要的,但分数为什么会改变这点更重要”,因为系统不一定能以一种人类可理解的自然的方式去表达这些技巧。 为了确定这一点,Textio实际上会对用户提出不同的建议,试图找出哪些技巧与分数的改进有关联,从而不断地更新系统。 此外,作为融资的其中一项条件,Stacey Bishop——领投者SCAle Venture Partners的合作伙伴——将加入Textio的董事会。作为营销自动化公司Hubspot,Scale和Bishop的投资人,他或许能为Textio在应对销售和营销沟通方面的业务时提供一些专业指导。 值得一提的是,AI除了能改善招聘启事,还能识别最佳求职者和为求职者提供模拟面试。Riminder 便是一家帮助 HR 更高效地处理简历、更精准地找到人才的法国创企;而日前刚刚成立的 “有职”则是一家基于AI技术提供模拟面试的人才举荐平台,36氪曾对它们做过专门报道。 『本文图片来自:Yestone 邑石网正版图库』 本文参考了多个信息来源:venturebeat.com,如若转载,请注明出处:http://36kr.com/p/5080794.html
    AI
    2017年06月23日
  • AI
    谷歌上线AI职位搜索功能,一键查询所有适岗信息   近日,谷歌宣布推出全新的职位搜索功能,只需像往常一样在搜索页面输入关键词,它就会给你整理出领英、Monster、WayUp、DirectEmployers、CareerBuilder和Facebook等网站的相关结果。如果一家网站的主页列出了在聘岗位的话,谷歌也会在搜索结果中显示。 之所以推出这一功能,是因为谷歌希望帮助求职者更快找到工作,而不是浏览各色网站之后,却发现不断重复或不相关的职位。 目前这项功能已登陆电脑端和移动端,仅支持英语,你可以输入“我附近的工作”,“文书工作”等关键词,谷歌就会跳出职位搜索小窗口。然后,你可以进一步细化要求,比方说是否全职等等。当你点击某个岗位时,还能够看到这家公司在Glassdoor和Indeed上的评分。 你还可以根据行业、地点、发布时间和老板来筛选工作,如果发现某个搜索关键词非常好用,你可以开启通知,不错过任何新发布的内容。 “找工作就像约会。”谷歌产品经理Nick Zakrasek说,“每个人都有自己的喜好,而每个工作也只需要一个人。” 发现心动的工作后,谷歌会指引你前往相关网站,开始真正的求职过程。如果一份工作出现在多个网站,那么谷歌会将你指引至岗位最齐全的网站。谷歌发言人表示:“我们希望通过这一设定,鼓励求职网站丰富岗位信息。” 不过,谷歌非常清楚,它并不想与Monster、CareerBuilder等网站竞争,因此没有计划让企业直接在其搜索页面发布工作信息。“我们想做自己最擅长的搜索。”Zakrasek说,“我们想让这一生态系统中的公司更成功。” 【猎云网(微信:ilieyun)】6月20日报道(编译:蔡妙娴)
    AI
    2017年06月21日
  • AI
    以模拟面试为切入,"有职" 想借 AI 开启求职招聘市场新玩法 人工智能、大数据应用在各个行业里,人才招聘领域也不例外。对于求职者而言,如何提高面试成功率并找到合适的岗位,也是成为大家一直关注的话题。 目前,刚刚成立的 “有职”,便是一家基于众包方式提供模拟面试的人才举荐平台。现阶段,公司主要面向互联网行业工作0至5年的潜在求职人员,为用户提供模拟面试、泛职业知识分销及人才的培养举荐服务。 在创始人Jack看来,目前求职面试通常存在两方面的缺陷:其一,由一方主导的面试往往是种被动式的互动,信息不对称以致缺少双向的沟通反馈;其二,对于职场人而言,很多求职者或潜在求职者并不知道自己在哪些方面欠缺,也并不知道该学习哪些内容。而之所以选择借助AI技术切入模拟面试,主要在于求职市场上存在大量的文本数据,可以通过基于语义理解技术进行多维度的特征分析、提炼,比如简历库、面试问题库、岗位知识点等。 简单来说,有职想借鉴现有的医生“AI问诊”方式,并将其应用到求职面试中来。即通过模拟面试的方式,让求职者发现自身与目标岗位的差距,获取个性化的提升方案实现自我成长,提升正式面试成功率,甚至获得导师举荐的机会。 为此,有职为潜在的求职用户提供了两种基础服务模式:其一是面试官助手服务,即通过AI模拟面试机器人免费提供模拟面试服务,并与后端收费课程相结合;其二是模拟面试,即通过导师真人服务,以收费方式提供模拟面试,继而结合免费课程服务。 从服务流程来看,有职的用户可以直接选择面试官助手进行模拟面试交互,也可以通过在平台上挑选真人导师来预定模拟面试,导师在服务后填写相关能力评估表,在完成整个模拟面试后,针对不同能力的人群可以基于数据分析结果提供人才举荐、维系培养、小班特训的针对性服务,最而关于评价体系,有职采取了对导师以及求职者进行双向评分以对服务效果进行控制。 有职模拟面试 至于如何推向市场,Jack也表示,有职前期主要基于微信服务号运营,并于2017年4月1日项目正式启动。在上线一个月时间,有职便通过脉脉、行业交流群等线上渠道获取潜在用户,建立有职用户专属微信群进行服务转化,前期已获取25个导师、200个用户、80% 用户净推荐值。在盈利方面,有职则包含了模拟面试收入分成、泛职业知识分销提成、招聘服务多种方式。 事实上,目前从不同角度切入求职招聘市场的公司并不在少数。其中典型的如提供AI+人才与岗位匹配决策的ipin、搜前途、简寻;信息匹配的内推、boss直聘等;专注大学生求职服务的面包求职、职业蛙等。相比之下,Jack表示,有职的最大的差异化在公司的市场定位上,即通过以众包模拟面试为切入点,借助人工智能技术帮助用户准确的评估与提升自己,提高面试成功率与岗位的匹配度;且未来,公司也会更多加强与B端客户的深度合作,面向求职者提供岗位相关内容延伸服务。 据悉,目前公司正处于天使轮融资阶段,将主要用于团队扩张、产品研发及后续市场推广方面。 来源:36氪 ,作者:无知喵,如若转载,请注明出处:http://36kr.com/p/5080376.html
    AI
    2017年06月20日
  • AI
    AI 将彻底改变招聘工作,它挑人的标准有何不同? 编者按:技术带来的革新无处不在。在人才招聘市场,AI的出现更是替招聘方解决了一些人员和技术上的难题。本文作者Jennifer Alsever在” How AI Is Changing Your Job Hunt”一文中道出了AI通过算法和数据进行模式化分析,使招聘公司能够在尽可能短的时间内招到最合适人选的可能性。与此同时,作者也表达了对于由此产生的招聘歧视的担忧。 多年前,费里曼困惑于一个经典的招聘问题。他创建了一个名为“42层楼(42Floors.com)”的在线房地产服务公司,公司最初有员工10人,随着发展则极度需要填充人力。仿佛是一夜之间,费里曼需要花费大量时间筛选简历,这让他手足无措。 在AI(人工智能)出现后,解决方案应运而生。AI通过在线模拟求职者在第一天上班时会做什么来加快简历审查的过程。除了评估所谓的书面知识,AI还能识别许多无形的人类品质。它使用自然语言处理和机器学习技术来建构个人心理档案,以此预测此人是否适合公司的文化氛围。这包括评估他或她喜欢使用哪些词,比如用“请”和“谢谢”,去发现其同理心和接待客户的可能性,并衡量求职者在谈话中的表现。“现在,我们可以用几天时间从4000名候选人中挑选出合适的2%至3%,”费里曼的公司目前有45名员工。“在48小时之后,我们成功雇到了一名员工。”这种方法不是完美无缺的,但它比之前的方法更快更好。不止是创业公司在使用这种方法,行业巨头也在使用。AI已经向招聘行业进军。 预测算法和机器学习正在成为快速识别最佳求职者的工具。公司利用AI来评估求职者的品质,并从词语选择、微手势到心理感情特征及其在社交媒体上发布内容的语气等内容着手分析。这类软件一般用在招聘早期帮助公司筛选人员,而到了后期则需要招聘人员面对面地进行面试并做出自己的判断。收益于潜在的市场需求,一大波创业公司正在提供相关服务。总部位于旧金山的Entelo公司通过挖掘互联网和社交网站去预测哪些求职者可能会跳槽。另一家位于加州的创业公司Talent Sonar可以支持机器学习算法,旨在避免招聘过程中的性别歧视。该软件甚至隐藏求职者的姓名和性别等,希望帮助招聘人员克服无意识的偏见。位于犹他州的HireVue公司则通过视频考察求职者的语言表达、音调感染力等。 谷歌同样加入了这股潮流中。它发布了一个名为“云工作(Cloud Jobs)”的新项目,像强生公司和联邦快递这样的巨头在他们的求职网站上使用该软件来更好的与求职者沟通。为了完善该软件,谷歌扫描了数百万个职位空缺以发现某些特性与工作效绩之间的联系,并将其应用于完善分析和机器学习模型。 咨询公司巨头德勤的人力资源部门负责人乔西·伯尓辛说,AI领域正处于“风口且竞争激烈”。目前,约有75家创业企业正在争夺1000亿美元的人力资源评估市场。贝尔森说:“我每天都会受到一些试图通过AI技术革新招聘市场的人的电子邮件。”算法是否能够发现招聘这项充满神秘感的活动?它匹配出的结果能比招聘人员挑选出的人更出色吗?而这些问题解决之后会出现一些新的问题吗? AI的建立基于这五点看法 忘掉成绩 根据谷歌的调查,GPAs和成绩测试毫无价值。调查结果发现,在谷歌,没有任何大学教育背景的人的比例在增加。在一些团队中,有14%的人从未上过大学。 意志力比智商更重要 宾夕法尼亚大学的教授安吉拉·达克沃斯研究了军校学员、困难社区的菜鸟老师和新入职的销售人员,以发现耐心和成功的关键因素。是激情和毅力,而不是智商、社会智力、外貌和健康在其中扮演着重要角色。 经验不是万能的 美国内部销售人员协会和人工智能创业公司的一项研究得出的结论是,经验并不能预测成功的销售。另一项研究发现,担任中层职务的毕业生的表现比俱乐部总裁的要优秀,因为公司比明星团队更需要团队成员。 你以为的可能存在偏差 一个有工作能力的人可能会对跳槽后的公司产生失望心理。在相似公司的相似职位中,有75%的关键因素存在差异。在大学期间工作的小时数可能是一个影响因素。同时,上心理学课程作为团队合作的指标是另一个影响因素。因此,是否匹配显得至关重要。 忘掉Facebook上的照片 AI公司发现,在社交网站上晒喝酒的照片并不意味着这个人的工作表现就很糟糕。这种照片很常见,如果要把此维度考虑在内就会筛掉许多人。相比而言,关于药物的偏见评价或帖子更应该与求职者的个人评估状况挂钩。 当然,人们更喜欢对他人做出评价。但事实证明他们并不擅长。耶鲁大学管理学院的教授詹森·达娜多年来关注于招聘领域。最近她在《纽约时报》上发表了一篇引人注目的文章,认为严厉的求职面试毫无用处。“它们可能是有害的,”达娜写到,“这削弱了其他来自求职者的更有用的信息。除此之外,她还注意到,招聘人员倾向于把对话印象转变成一种错误的连贯性叙事。” 该公司的前人力资源总监拉兹洛·博克对此表示认同:“大多数面试都在浪费时间,因为99.4%的面试时间都是为了确认面试官在前10秒钟形成的印象。”在修改了公司的招聘策略之后,博克出版了一本新书《Work Rules!》。 谷歌在2008年开始评估其做法。在早期,该公司向斯坦福大学和麻省理工学院这样的精英学校招聘。但是当谷歌调查了它的员工数据后发现,考试成绩和毕业学校并不能预示着工作上的成功。相反,有相当多的管理层人员毕业于公立学校,或者根本没有完成大学学业。 AI软件可以察觉到当一名求职者谈论他的前任老板时,其脸上的蔑视之光。 这使得谷歌重新思考它的招聘方式,并利用算法帮助识别求职者的相关品质,包括认知能力、理智且谦虚程度以及学习能力。 谷歌创建了一个名为qDroid的程序,并用它分析求职者的信息数据并以此对其提出公司所关注的问题。 数据至关重要。如果没有与工作相关的信息的剧增,AI的进一步应用将很难想象。在不久前,招聘方会根据一份纸质简历上的技能值和经验值打分,但是领英改变了这一点,它的简历里提供了大量个人关系信息。而AI的优势就在于能够梳理这些数据,检查多个变量,进而找出人类可能未发现的深层逻辑。 一些AI技术创业公司所擅长的正如人们所期待的那样,即通过使用电脑分析求职者数据中的一些优秀品质。一家名为Fama的创业公司通过自动分析求职者的身份,通过网络搜索其性格以及世界观。本·莫尼斯说,他雇佣了一个求职简历及面试都很优秀的人,但结果发现这个人厌女且是一个种族主义者。莫尼斯认为,如果他提前看到了这个人的社交媒体的内容,那么这件事可能就不会发生。但是这样的搜索存在潜在的生物和法律风险。查看求职者的社交媒体,进而了解其有关种族、宗教、性取向或政治立场等信息其实是非法的,这会引发有关雇佣歧视的投诉。就业法律公司Seyfarth Shaw的合伙人帕梅拉·德瓦他表示:“这个问题比较棘手,因为如果一旦你搜索了相关信息,那么就会不自觉地受此影响。” 莫尼斯认为AI是解决这个问题的唯一方法,它可以快速挖掘成千上万条社交媒体和网络文章并分析它们,同时摘除雇主的责任。但是这么做即意味着要求计算机像一个人一样可以阅读并理解文本、照片和视频,而莫尼斯认为困难很大。 在招聘领域之外使用AI的五种可能 药物 Eli Lilly公司和Merck公司正在与创业公司合作,对数以万计的化合物进行研究以发现哪种产品最为有效,并以比过去更低的成本更快开发它们。 零售 英国连锁百货公司Morrisons正在使用德国Blue Yonder公司的AI,它为每个商品的每一种产品定制每日的价格,并根据广告、天气和假期等影响因素安排库存。 法律 K&L Gates公司使用ROSS Intelligence公司的人工智能,将机器学习、自然语言处理和微软的沃森技术结合在一起去阅读达百万页的资料,让其理解上下文语义并总结出一份相关报告。 呼叫中心 进步保险、富国银行和希尔顿酒店使用AI来分析呼叫者的音调、速度、关键字和语法,并将呼叫转交给具有适当技能的代理人。来自Mattersight公司的软件将通话时间缩短了23%。 旅游 猫途鹰(TripAdvisor)使用来自Flyr公司的软件,能让客户在预定前二至七天锁定价格。 雇主们越来越多地将AI应用到直觉性问题上,包括应聘者是否与公司的文化氛围契合,或者是否能在公司待很长一段时间。Adidas、HealthSouth、Keurig 和Reebok公司在使用一个名为SkillSurvey的AI服务。它通过提出一些针对具体工作的在线问题,分析求职者使用词汇的情况并进而预测其流动率和未来的工作表现,然后输出总成绩与平均成绩,并将结果与其他候选人进行比较。HealthSouth公司在使用了AI服务后辞职人数减少了10%。一年之后,它的对于求职者资质审核的人员要求也减少了92%。 花旗集团正利用AI来预测哪些毕业生具备成为投资银行家的潜力。该公司希望员工能够保持多样性、并使其能够适应公司的氛围,进而全身心投入到工作中。银行业巨头全球招聘负责人考特尼·斯托兹说道:“我们需要一个更有效的筛选过程。” 花旗集团正在使用西雅图的Koru公司推出的软件。该软件分为两个步骤。第一步,Koru首先用20分钟的时间调查花旗集团的文化和现有员工的特征。第二步,招聘人员与Koru合作针对求职者展开另一项调查,以提高招聘的速度和质量。 前麦肯锡咨询公司顾问乔西·加勒特和科技企业家克里斯汀·汉密尔顿于四年前创办了Koru。在进行了数十项研究之后,二人推出了Koru的预测分析软件。该软件的重点是分析求职者在职业生涯的前七年的所作所为。因为求职者除了成绩和大学声誉之外,几乎没有什么值得评估的维度。加勒特认为:“平均绩点很容易达到。但是AI可以越过这些变量,看到背后的逻辑。比如持久性这类的变量可以揭示出相关品质。”该软件使用的算法可以搜索过去行为中的痕迹。而与其关注一个人标签化的品质,不如关注他们的积累过程。真正重要的是这个人在工作中所一贯坚持的东西、他承担的领导角色以及完成项目的程度。而在之后,软件会进一步准备后续面试问题,让雇主更深入地进行挖掘。 Koru的软件还可以从之前的招聘中察觉公司的倾向,并对其进行调整。AI在招聘、留任和表现方面收集的数据越多,它能够分析的数据就越详细。 目前阶段,一些AI程序已经能够分析人类某些无形特质,这可能连求职者自己也还没有意识到。比如,HireVue公司能够用算法评估求职者的面试视频。数据科学家使软件能够分辨出人们的意图、习惯、个性和品质等。该软件评估一个应聘者是否使用主动动词,如“can”和“will”,或者依赖于“can’t”或“have to”这样的消极词。它还通过分析声音的变化和成千上万种表达情感的微表情来考察求职者的个人特性。后者是基于著名心理学家保罗·艾克曼的分类学,他创造了一种“情感图谱”,里面包含了10000个面部表情。相比人类,软件识别和关联情绪的能力更甚。 HireVue的使用包括两个部分。客户公司记录数百份工作面试情况,此外还要记录那些被聘用者的表现和留任情况。该软件会进而寻找面试中发现的特征和最终工作表现之间的联系。它的目标是预测一个人是否会在呼叫中心工作超过两个月,或者在过去是否对雇主存在敌意。HireVue的首席技术官罗兰·拉森说道:“当他们说‘老板’这个词时,他们脸上会闪过一丝轻蔑的表情。”进而,这个表情被AI收归到算法中去。不过,现在仍处于早期阶段,德勤的贝尔辛表示:“还没有人掌握了这颗魔法子弹。”不过一旦有方法接近,那么收益会非常巨大。 编译组出品。编辑:郝鹏程 本文来自翻译:fortune.com,如若转载,请注明出处:http://36kr.com/p/5078432.html
    AI
    2017年06月06日
  • AI
    用 AI 帮助销售人员优化工作流程,People.ai 获 700 万美元 A 轮融资 根据科技媒体 TechCrunch 的消息,人工智能初创公司 People.ai 近日获得了 700 万美元的 A 轮融资,本轮融资由 Lightspeed Venture Partners 领投。本轮融资将帮助 People.ai 进行产品的完善和销售落地。 People.ai 通过人工智能技术为销售人员提供一定的策略性指导从而帮助他们提升成交率,虽然落脚于提升业务绩效,简单来说,People.ai 一方面将不同销售人员的业务流程可视化,另一方面则通过算法分析为团队提供一个“成功公式”。但从本质上来看,People.ai 更像是一个团队管理工具, People.ai 注意到,目前大多数销售团队的管理人员对于一线销售人员的工作指导常常基于直觉而非数据,主要原因在于前期的工作流程难以进行量化、可视化,而过程和最终绩效之间的相关关系也很难体现。 在工作流程可视化方面,People.ai 通过追踪每一位销售人员的工作邮件、电话、会议等工作行为,可以对每一位销售人员在具体某个工作环节分别花费了多少时间进行统计并出具数据可视化结果。 以可视化数据分析结果和最终的工作绩效为基础,People.ai 的算法能够帮助管理者对团队工作进行复盘。那些业绩优秀的员工之于其他成员在哪些环节上付出更多、通过哪些行为让工作更加高效都能被清晰展现,反之,那些业绩差强人意的一线销售在哪些环节表现较为薄弱自然也能找到答案。 此外,People.ai 还能够对团队成员的阶段表现进行动线追踪。 不过,虽然 People.ai 能够通过追踪销售人员的工作行为并对之进行分析从而得出一个提升业绩表现的“成功公式”,但在实际操作中,销售人员的个人特质、和客户具体面对面交流等这些也是影响交易行文的要素,但是并不能被 People.ai 追踪并展现到可视化结果,因此,在实际应用层面,People.ai 的实用性仍有待验证。
    AI
    2017年05月31日
  • AI
    用AI处理重复性行政工作,UiPath获3000万美元A轮融资 日前,美国机器流程自动化(RPA)公司UiPath完成3000万美元A轮融资,由Accel领投,原投资人Earlybird Venture Capital、Credo Ventures以及Seedcamp参投。 该公司将用一部分资金来加速全球扩张,包括扩大今年刚成立的新加坡办公处的规模。 对于另一部分资金,UiPath计划用于产品开发,包括强化人工智能技术,主要围绕其核心计算机视觉技术。 此外,该公司还将注重增强产品的认知能力,让企业能够处理好大量结构化与非结构化数据。 谈到在新加坡的发展,UiPath表示,“新加坡政府大力支持通过技术来提高生产力,因此该市场的RPA需求旺盛。已经有众多公司对UiPath的产品表现出了兴趣,包括大型金融服务公司、保险公司,以及政府、电信公司、公共设施公司等。” RPA指的是利用人工智能或机器人来处理重复性行政工作,并实现自动化的技术。举例来说,保险公司可以用RPA来处理保险索赔、员工入职手续等。这些过程的数字化能够大幅提高生产率、准确度和合规度,让员工能够集中精力投入创造性和战略性工作。 UiPath宣称拥有150多位合作伙伴,包括大型咨询公司Deloitte和Capgemini,其200多位客户来自全球各地,覆盖银行、金融服务、保险、制造、公共设施、健康医疗行业,还有政府组织。该公司的大牌客户有Lufthansa、Generali、Telenor和Dong Energy等。 UiPath CEO Daniel Dines表示:“获得这笔投资,让我们能够将智能RPA的优势带给全世界更多企业,并在迅速升级的产业内保持领先优势。” “我们让工作更有活力、更高效,这些客户在推动我们的业务发展的同时,也在推动全球经济向前发展。许多企业尚未发掘的潜力,也是这一市场的魅力所在。” 【来源:猎云网(微信号:ilieyun)】4月27日报道 (编译:蔡妙娴)
    AI
    2017年05月02日
  • AI
    瞄准AI法律服务,LawGeex正用人工智能实现合同审核自动化 鉴于法律服务的特殊性,长久以来法律工作的自动化和数字化程度相对滞后。但随着人工智能的不断发展,也有越来越多的公司开始试图通过技术的手段去解决这样的问题,LawGeex 便是这一领域中的先行者。 LawGeex,成立于2014年12月,位于以色列特拉维夫。是一家AI驱动的合同审查平台,通过提供自动化的合同审核解决方案以帮助个人及企业解决耗时费力的商业合同审核问题,从而提高效率并降低风险。截止目前,公司总融资额为950万美元,最近一次为今年3月份的700万美元A轮投资,投资者包括Recruit Holdings以及前投资者Lool Ventures和LionBird等。据悉,公司此轮融资将进一步用于增强其SaaS产品,并继续建设工程师、数据科学家和法律专家团队。目前面向的市场已覆盖了澳大利亚、加拿大、英国、美国。 产品层面,LawGeex提供了一款由人工智能驱动的在线合同审核平台。其核心在于结合机器学习算法、文本分析和自然语言处理技术以及专家律师的知识来深入的审查和理解法律文件,精准指出合同中的缺点及潜在的法律风险,包括一些不常用的、缺失的和有可能问题条款。平台首先由法律工作者预先设定法律原则和审核标准,包括一些特定的要求,然后由机器自动学习这些原则和要求,并将需要审核的商业合同的主体内容与这些原则和要求进行对照,进行合同审核并提供详细的审核报告。LawGeex目前可支持从NDAs到采购订单、商业租赁、销售服务和货物的合同、雇佣合约(其为个人免费使用)等涵盖30多种广泛的标准业务合同类型。 相比传统的人工审核方式,通过LawGeex平台审批合同可以节省80%的时间以及90%的成本,同时也极大的简化了销售、运营和法律之间的工作流程。如此,运用人工智能将法律工作中的常规环节实现了自动化,这不仅极大的提高了企业的工作效率,同时也让律师等法律工作者能够更专注于客户服务中比较复杂、高价值的领域。 从运营情况来看,LawGeex为个人用户提供免费服务,为企业提供有偿服务。创始人Noory Bechor也曾表示,鉴于产品的易用性和高性价比,平台刚上线几个月便通过口碑传播获得包括德勤在内的成千上万的客户,审查了数以千计的文件,其中包括、Apple、Google、facebook等公司的劳动雇佣合同。 而从目前提供AI法律服务的国内外公司来看,主要以涉及法律检索、文件审阅、案件预测、咨询服务四大领域为主,包括为律师提供辅助工具或是直接面向消费者提供产品服务。比如,IBM推出的智能律师ROSS、与用户聊天的律师机器人 “DoNotPay”;国内市场上,法狗狗推出的应用于刑事案件的案情预测系统、定位于人工智能法律咨询机器人的 “法律谷” 、将关联案件分类整理并提供可视化数据服务的 “理脉” 等等。整体来看,这些应用于法律的人工智能仍属于工具的范畴。 团队方面,LawGeex 是由国际律师 Noory Bechor 和AI专家 Ilan Admon 创立。创始人Noory Bechor,是一位国际商业律师,曾在一家领先的技术和投资领域的律师事务所工作,也是一个兼具创业精神和使命感的人;联合创始人兼CTO Ilan Admon,是一名人工智能大师,在过去20年里一直在研究机器学习算法,具有丰富的技术背景经验。目前公司团队已超20人。 来源:36氪 ,作者:无知喵,如若转载,请注明出处:http://36kr.com/p/5070840.html
    AI
    2017年04月17日
  • AI
    AI+财税,税云想要让机器代替税务师帮企业节税优税 在税务服务上,基本上是税务师事务所来服务企业。截止2015年年末,全国有5000多家税务师事务所,参与服务的税务人员接近10万人。而官方统计,这部分服务仅仅覆盖了5%-6%的企业,还有更多企业需要服务。但这部分中小企业一方面因为受制于价格因素,另一方面因为税务服务人员的水平限制,这些企业找不到匹配的服务对象。 当前国家征税管理互联网化是一个趋势,许多公司业务都进入了信息化时代,而企业税务端管理尚未实现信息化,目前仍处于靠人管理税收的阶段,效果仍取决于服务人员的专业水平高低。此外,因为所有的税务服务都是依照税法进行,因此税务管理的效率和结果取决于税务人员对税法的理解和应用,而这种专业的税务人才是稀缺资源,如何将税务人才的经验在数千万家企业推广应用仍是个很大的挑战。 基于这几个方面的考虑,税云想要推动企业信息化管税,为企业提供智能化税务服务。 税云根据100多名税务师的税务经验,建立了涉税知识库、案例库、法规库和企业经济业务特征库这几个数据库,通过把众多税务师的案例和处理业务的出发点进行数据化处理,设计税务处理分析的机器学习模型,不断完善“税云大脑”(大穗),实现税务服务的人工智能化,让机器代替税务师帮助企业做税务判断。 有了这个数据库和底层机器学习模型作为基础,税云为大企业和中小企业提供了两套解决方案。 针对大企业,税云会按照客户具体需求提供定制化服务。例如对新奥集团,税云为其定制税务评估分析和税收备案备查管理,所有税务资料都能够通过平台进行可视化分析,此外还为其提供平台化管税系统,对增值税实现税务集团化税务管控。还有新疆城建和广汇集团,税云为他们提供自动税务风险识别系统,这些都推动了集团税务智能信息化发展。 而对于中小企业,税云研发了一系列的SaaS应用,帮助其进行纳税筹划和管理。例如在纳税筹划方面,税云推出了个人所得税工资薪金最有测算,只要输入应税收入,就能够通过模型算法算出最优工资及年终奖金发放方案,让企业的代扣税金降至最低。此外,还有土地增值税等税种的筹划与管理。 此外,若是企业有安全考虑,税云还可以为将SaaS软件部署在企业内网,所有数据都存储在企业自己的云端。 当问及如何读取企业的财务数据时,税云创始人兼CEO王云告知,税云收购了一款读数软件,能够通读90多个版本的财务软件的财务数据,然后根据这些数据做税务改进处理。这款工具是税云的核心知识产权,已经应用了十几年了。 因为税收与国家利益息息相关,因此税务服务的合规性关系到客户的合规风险,这直接影响一家智能税务公司的市场规模。而在合规性方面,王云强调称,税云依据的所有税务师案例均符合税法要求,不会涉及法律的灰色空间。 在智能税务上,去年德勤会计师事务所与Kira systems合作将人工智能引入会计、税务和审计,并在年末推出多项税务智能管理解决方案。与之相比,王云认为税云的优势在于熟悉本土的税收法规和企业管理流程。 据悉,税云的团队有20人左右,都是技术人员,外聘的税务师达到60多个。未来税云将会在上海设立人工智能研究院,专注于技术研发。 『本文图片来自:Yestone 邑石网正版图库』 来源:36氪,作者:司徒,如若转载,请注明出处:http://36kr.com/p/5069098.html
    AI
    2017年04月07日