人工智能
职场报告:现在还没必要担忧AI完全取代你的工作
编者按:本文来自网易智能,选自:cnet编译,网易见外智能编译平台,审校:nariiy。
人工智能是一种稳定的潜流,但它不会是未来一年影响求职者的唯一因素。
员工需求和真正的智能技术可能会改变公司在2018年招聘和留住人才的方式——甚至可能改变你的工作方式。根据求职平台Glassdoor周三发布的一份报告,人工智能和自动化等技术将影响到劳动力的方方面面。这并不奇怪,因为人工智能正在影响各种领域,从网络搜索结果到手机安全,甚至是我们对气候变化的反应。Glassdoor称,真正驾驭人工智能浪潮的行业是人际关系,这一事实对所有求职者都有影响。
人工智能可以帮助招聘者筛选成堆的简历
人力资源部门经常被叫去筛选成百上千份简历,像HiringSolved、Entelo和Textio这样的平台则提供人工智能工具去帮助用户完成这一过程。人工智能还被用于编写不带有偏见的工作描述,并且被要求处理重复性的任务,比如安排候选人面试。Glassdoor预计,在明年及以后的招聘中,人工智能应用将得到更大的普及。
另一个受人工智能影响而发生巨大变化的领域是金融服务,像开发对冲和执行交易这样的常规任务可以用机器学习软件完成。这为更高级别的财务咨询和销售角色留下了空间,这些角色需要判断力、信誉和长期的人际关系——这些都是与生俱来的“人性”。
这些趋势将会从2017年开始,这一年是招聘的好年头。据Glassdoor网站称,截至去年11月,今年新增了190万个工作岗位。失业率处于4.1%的17年低点,这意味着,科技、医疗、电子商务和专业服务领域的人才争夺战,让雇主们争相填补610万个空缺职位。
与这些积极的信号相抗衡的是,人们担心人工智能会破坏经济,迫使人们失业。但是,在Glassdoor的首席经济学家Andrew Chamberlain看来,这些担忧都是不存在的。
“人工智能很少能完全取代一份工作,”Glassdoor报告的作者Chamberlain认为。“它通常会取代一部分工作,然后把其他部分留在后面。”
人力资源和金融领域之外的行业也会感受到人工智能的影响,包括医疗保健。人工智能技术正在帮助放射科医生更准确地检测病人成像扫描中的癌症;在零售领域,它通过亚马逊的Alexa等语音服务创造出家庭购物体验;在交通运输领域,人工智能辅助的卡车运输和包裹递送意味着更安全、更便宜的配送。
更好的透明度
你有没有想过,为什么追踪你订购的一双鞋很容易,但很难得知道工作申请的每一步进展?随着越来越多的雇主将提高透明度作为一种差异化的方式并吸引顶级人才,这种情况在2018年也可能发生变化。求职者想知道招聘过程需要多长时间,他们的简历是否经过审核,以及为什么要做出此种决定。
“对于求职者来说,这是一个主要的痛点。” Chamberlain说。“雇主只会在有压力的情况下才会投资。”
人们申请工作的方式也在转变,向移动端倾斜。Glassdoor网站称,其4800万月独立访客中,超过一半的用户使用移动设备访问该网站。尽管移动求职很方便,但实际上在小屏幕上求职的过程可能会很麻烦。Chamberlain说,这是因为许多公司用来管理在线招聘的软件已经过时了。随着越来越多的求职者在移动设备上寻找工作,企业将会感受到增长的压力,因而开始简化这一流程,并投资更好的软件和功能。
与此同时,在接下来的一年里,寻找帮助促进横向职业发展的“角色试验”项目将会变化。Chamberlain说:“在如今非常紧张的劳动力市场中,对很多争抢技术人才的公司来说,这是一个很好的解决方案,因为你可以更好地利用已有的内部资源。”
当就业增长遇上技术
Glassdoor的预测显示,医疗保健行业在2018年的增长可能最为明显。2016年至2026年期间,家庭保健助理的新工作岗位需求将会超过110万个,因为婴儿潮一代正在步入老年。美国劳工统计局的数据显示,预计未来十年,增长最多的15个工作岗位中,注册护士、医疗助理和护理助理将会是其中之一。
科技公司在世界各地将保有持续的知名度。这对软件开发者来说是个好消息,他们可能会被雇佣到零售、金融、制造业、咨询和生物技术领域,以及硅谷以外的地方。
“如果你今天从事的是技术工作,你可能并不一定要在科技行业工作,”Chamberlain说。“今天,各种行业都在招聘技术从业者——从媒体公司到咨询公司,从政府到金融业。他们都在招聘软件工程师和数据科学家,以及类似的人,因为他们想要更有效地使用自己的数据。”
服务员、清洁工、客户服务代表、建筑工人和卡车司机等传统职位预计也将位列增长最多的15个岗位中。这是因为它们涉及的是一种劳动密集型的、难以实现规模化自动化的工作。人工智能和技术可以将这些工作的部分自动化,但其他需要人类判断或移情的部分无法被取代。
尽管公司为吸引顶级科技人才而提供更多的福利和灵活的工作环境,但鉴于传统求职者在劳动力市场中的重要性,公司可能需要匀出部分福利给传统求职者。与技术人才一起工作的人也能享受到特殊的“照顾”。例如,如果一家公司推出免费的零食和餐食,以吸引那些备受追捧的软件开发者,他们很可能会为所有部门的员工提供这些福利。
人工智能
为企业提供基于人工智能的客户服务解决方案,伦敦创企DigitalGenius获1475万美元A轮融资
据外媒消息,总部位于英国伦敦的人工智能客户服务解决方案DigitalGenius宣布获得了一笔1475万美元的A轮融资,领投方为Global Founders Capital,参投方包括MMC Ventures,Paua Ventures,Salesforce Ventures, Runa Capital, RRE Ventures, Lumia Capital, Compound 和Lerer Hippeau Ventures。截至目前,该公司的融资总金额达到了2600万美元。
记者还了解到,由于人工智能技术还没有发展到能够与人类顺畅交流的阶段,很多部署了智能聊天机器人的企业在提供客户服务的时候往往无法提供准确的解释、支持和帮助,导致客户体验极差,甚至造成客户流失。为了解决这个问题,DigitalGenius采用了一种“机器学习*人工干预”的整体解决方案,用机器学习和自然语言处理技术分析社交媒体、文本和电子邮件内容,然后把信息分为不同等级推送给客户,一旦解答信息等级变得越来越低,那么就会有人工客服参与进来。目前,该公司的客户包括荷兰皇家航空、联合利华、欧洲之星、以及Soylent等。
本文作者:Farmer
来源:鸵鸟创投媒体(微信:wechuangye)
人工智能
2017年度人工智能报告:7大行业应用,100个初创企业
来源:公众号“龟兔赛跑”
2017年,中美两地人工智能投资大热。中国出台《新一代人工智能发展规划》,首次将人工智能发展提高到国家战略层面;
美国发布《人工智能:自动化和经济》,敦促政府确保美国AI领先地位;
中国,百度在国内首届人工智能开发者大会提出“All in AI”愿景,美国,谷歌在I/O大会上提出“AI First”的新方向。
年末,分析了2017全年对于人工智能的投资趋势,总结了七大行业应用。
正文如下
-END-
撰写团队:王子, 王宇辰,马雅伦,陈宏伟
人工智能
唯你网完成3亿人民币A轮融资,用想人工智能助力企业智慧财税
12月8日下午,唯你网在厦门举办“财智未来——唯你网A轮融资暨财税机器人新品发布会”,宣布获得了3亿人民币A轮融资,由中航信托、长融资本、圣农资本及天健咨询等投资机构投资。据悉,这是目前财税领域最大A轮融资。此外,会上还推出了为大中型企业服务的账e捷智能财税机器人,以全新形象“OLI”登场。
唯你网成立于2013年,是一家以大数据、人工智能技术为基础,以智能财税服务为核心业务,并通过数字金融连接,与产业园区、新零售、智慧牛业、冷链等产业深入联动的企业智能化服务商。目前公司拥有员工约600人,覆盖17个省和直辖市、76个地级市区、港台两地。在海外,唯你网布局了马来西亚、新加坡2个国家。目前,唯你网已服务30+大中型企业、2000家财务公司、50万+小微企业,累计850万张数据票。
发布会上,唯你网首席顾问连伟舟表示,唯你网用4年时间,验证了“人工智能+财税”的商业模式的可行性。唯你网运用“智能识别”和“语义理解”两大技术优势,开发从服务小微企业的账益达,延伸到服务海外小微企业的Imageccount,再到现在服务大中型企业的账e捷一系列智能财税应用。除此之外,唯你网还在财税的基础上,延伸出数据金融、智慧产业、数据服务等增值服务,2017年收入已实现将近300%的增长。
连伟舟称,本轮融资引入的投资机构主要进行公司资源整合和布局,在核心技术、业务领域进一步巩固领先优势,资金将主要用于提升人工智能核心技术、高端人才引进、品牌建设、市场拓展的投入以及未来实现产业整合、战略并购。唯你网未来旨在以人工智能为基础,颠覆财税行业全链条的发展规划,致力于成为世界级智能财税服务公司和世界级智慧会计外包工厂。
人工智能
人工智能人才短缺,科技巨头们想用 AI 再造 AI
编者按:谷歌等公司正在寻求通过自动化的方法来处理人工智能专家短缺的问题。谷歌的设想是,类似 AutoML 这样的项目,将能帮助企业构建他们自己的AI系统,尤其是那些没有深厚 AI 经验和实力的企业。据估计,如今具备能自我开发 AI 系统的人才的公司,全球不超过 1000 家,但其他更多公司却拥有开发 AI 系统所需的数据。
研究者的梦想,但也许是高级程序员的噩梦:可以建造其他人工智能的人工智能。
谷歌领导工程师之一 Jeff Dean 重点介绍了名为 AutoML 的项目。 ML 是机器学习的缩写,可以通过分析数据自行学习执行特定任务的计算机算法。 AutoML 是一个学习构建其他机器学习算法的机器学习算法。
通过 AutoML ,谷歌可能很快就会找到一种方法,可以部分地取代人类创建人工智能技术,构建人工智能系统,许多人认为这是技术行业的未来。
该项目是众多将最新的 AI 技术带给更广泛的公司和软件开发人员的努力之一。
科技行业正在创造一切的可能性,从可识别人脸的智能手机应用程序到自动驾驶汽车。 但据估计,全世界只有 10000 人拥有建立复杂、神秘数学算法所需的教育、经验和才能,以推动这种新的人工智能。
包括谷歌,Facebook 和微软在内的全球最大的科技企业每年向 AI 专家支付数百万美元薪资。人才短缺不会很快消失,只因为掌握这些技能需要多年的努力。
业界不愿意等待。企业正在开发各种工具,以便更容易开发 AI 软件,包括图像和语音识别服务以及在线聊天机器人等。
微软公司副总裁 Joseph Sirosh 说:“我们遵循计算机科学和所有新型技术相同的道路。”Joseph Sirosh 最近公布了一个帮助编程人员建立深度神经网络的工具,这种计算机算法推动了 AI 领域的最新发展。 “我们正在消除很多繁重的工作。”
这不是利他主义。Dean 这样的研究人员相信,如果有更多的人和公司从事人工智能的研究,将会推动他们自己的研究。与此同时,谷歌、亚马逊和微软这样的公司看到了 Sirosh 所描述的趋势中赚钱的机会。 他们都在销售云计算服务,帮助其他企业和开发人员建立人工智能。
中国创业公司 Malong 的联合创始人兼 CTO Matt Scott 表示:“这是真实的需求,而现有工具还不能满足所有的需求。”
这就是谷歌开展 AutoML 项目的原因。 谷歌 CEO Sundar Pichai 在今年十月发布了 AutoML。
Dean 说,最终,这个项目将帮助公司建立人工智能系统,即使不具备广泛的专业知识。 他估计,今天只有几千家公司拥有合适的 AI 人才,但有更多的公司拥有必要的数据。
他说:“我们希望将成千上万的公司从解决机器学习问题中解脱出来。”
谷歌正在大力投资于云计算服务,帮助其他企业构建和运行软件的服务,预计将成为谷歌未来几年的主要增长动力之一。 在网罗了大量世界顶级 AI 研究人员之后,它有了启动这个引擎的方法。
神经网络正在加速人工智能的发展。 工程师不用一次一个的手工构建图像识别服务或语言翻译应用程序,而只需一行代码,工程师就可以更快地构建一个自学习任务的算法。
例如,通过分析大量传统技术支持呼叫中的语音,机器学习算法可以学习识别口语词汇。
但建立神经网络不像网站或普通的智能手机应用程序。它需要重要的数学技能,极端的反复试验以及直觉。 独立机器学习实验室 Element AI CEO Jean-FrançoisGagné 将这一过程称为“一种新型计算机编程”。
在建立神经网络时,研究人员在一个巨大的机器网络上进行了几十次甚至数百次实验,测试一个算法如何学习一个任务,如识别图像或者从一种语言翻译到另一种语言。 然后他们一遍又一遍地调整算法的特定部分,直到他们解决了一些有效的东西。 有人称之为“黑暗艺术”,因为研究人员很难解释为什么他们会做出特定的调整。
但是通过 AutoML,谷歌试图将这个过程自动化。它正在构建算法,分析其他算法的发展,学习哪些方法是成功的,哪些是不成功的。 最终,学习建立更有效的机器学习。 谷歌表示,AutoML 现在可以构建的算法,在某些情况下,比单纯由人类专家构建的服务更精确地识别照片中的对象。
这个项目背后的谷歌研究员 Barret Zoph 认为,同样的方法对于语音识别或机器翻译等其他任务最终也能适用。
这不是一件容易的事情,但这是人工智能研究的重要趋势的一部分。专家称之为“学习的学习”或“元学习”。
许多人认为,这种方法将大大加快人工智能在网络和物理世界的进展。 在加利福尼亚大学伯克利分校的研究人员正在研究一种技术,使机器人能够根据他们过去所学的知识来学习新的任务。
教授 Pieter Abbeel 说:“电脑本来就是为我们发明算法的。 电脑发明的算法可以很快解决许多很多问题,至少这是希望。”
这也是一种扩大人工智能的人员和企业的方法。 这些方法不会完全取代 AI 研究人员,比如谷歌公司的这类专家,仍然需要做很多重要的设计工作。 但是,我们的信念是,只需要少数专家的工作就可以帮助大量的人建立自己的软件。
卡内基梅隆大学研究员 Renato Negrinho 正在探索类似于 AutoML 的技术,今天还没成为现实,应该在未来几年实现。 “这只是时间问题。”
原文链接:https://medium.com/the-new-york-times/building-ai-that-can-build-ai-7a0546be97bf
编译组出品。编辑:郝鹏程
人工智能
(长篇报告)2017全球人工智能人才白皮书:解读世界顶级AI牛人的秘密
人工智能竞争以顶级人才为根本。作为国家未来的发展方向,AI技术对于经济发展,产业转型和科技进步起着至关重要的作用。而AI技术的研发,落地与推广离不开各领域顶级人才的通力协作。在推动AI产业从兴起进入快速发展的历程中,AI顶级人才的领军作用尤为重要,他们是推动人工智能发展的关键因素。
因此,上至发达国家政府,下至科技巨头AI创业公司,无不将AI视为提升自身的核心竞争力的根本性战略。能够引领AI发展的顶级人才,环顾全球,尚不足千人,自然成了供不应求的抢手货。
能够引领AI发展的顶级人才,环顾全球,尚不足千人,自然成了供不应求的抢手货。
然而,人工智能领域人才分布极不平衡,全球AI领域人才约30万,而市场需求在百万量级。
其中,高校领域约10万人,产业界约20万人。
全球共有367所具有人工智能研究方向的高校;
每年毕业AI领域的学生约2万人,远远不能满足市场对人才的需求。
在这种供需极其不平衡的形势下招募团队,大公司比小公司有优势,国际巨头公司比大公司有优势,在某种意义上,国家比国际巨头还有力量。
美国人工智能领域的人才无论从数量、质量都要远超其他国家,虽然中国政府已经将人工智能上升到国家战略层面,但是仍然不能立即改变我国AI人才供需严重不平衡的现状,对此,我国应从政府,企业,高校,协会多种途径实现我国人工智能领域三步走的目标。
第一篇:美国主导下的全球AI人才发展现状
第1章 全球AI人才发展概况
当前,上至发达国家政府,跨国互联网巨头,下至研究机构、AI创业公司,无不将AI视为提升自身的核心竞争力的根本性战略,并预期AI将深刻改变人类社会生活、改变世界。
在国家战略布局方面,许多国家均有战略部署。其中,美国、中国、英国和日本各有特色。美国布局完备,领先各国一大步;中国则聚焦战略发力,积极扩充人才规模;英国则稳步推进,力求争先;而日本希冀通过机器人战略,打造超智能社会5.0。
▌ 1.1 四国AI战略布局对比
美国在AI战略方面布局完备,体现了高度的战略前瞻性,领先各国一大步。
首先,美国从顶层设计入手,规划了比较完备的人工智能发展战略。其次,美国政府设立专职负责机构,推动人工智能落地。再次,美国在AI人才方面举措超前,构建了完备的不同层次的人才梯队。
中国提出AI发展规划,谋求成为世界中心。中国政府将人工智能上升到国家战略层面。2017年7月,国务院印发《新一代人工智能发展规划》,明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。
英国要成为最适合发展和部署AI的国家。英国在人工智能道德标准及政府监管研究领域一直表现积极, 英国政府2013年就将人工智能列为八项伟大的科技计划。2017年10月15日英国政府发布了报告《在英国发展人工智能》,目标是使英国成为世界上最适合发展和部署人工智能的国家。
日本推行机器人战略,提出超智能社会5.0(略)。
▌ 1.2 全球AI高等教育对比
科技的发展核心之一在于研发人才的数量和水平,而这一条件取决于国家的人才培养体系,即教育系统。完善系统的教育体系能够为科技发展强力续航,提供源源不断,规模庞大的专业人员和研究人员。
目前,全球共有367所具有人工智能研究方向的高校,AI领域的人才数量约有10万人。其中,有6000多名AI领域的学者,以及7万余名AI相关专业在读硕博研究生以及其他。每年AI相关领域硕博毕业生约2万名。
在这367所高校中,美国拥有168所,占据全球的45.7%,独占鳌头,加拿大、中国、印度、英国位于第二梯队。
人工智能领域学术能力排在世界前20的学校中,美国占据14所;排名的前八个席位都为美国所占据。雄厚的学术研究实力,帮助美国在人工智能领域取得了首屈一指的地位。而其他国家,在学术能力上与美国差距巨大,如何发展AI教育,是值得思考的问题。
第一,高校AI专业设置:国内高校的AI起步较晚
第二,国外高校AI专业招生:关注理科素质,综合评判
第三,国外高校AI课程设置:计算机科学是基础
▌ 1.3 全球AI产业人才分布
目前,全球人工智能领域中,产业人才约20万人,大部分分布在各国初创企业和科技巨头中。
从国别来看,AI产业人才主要分布在美国、中国及其他国家的企业中。
以在初创企业工作的AI人才为例来看。截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等国家。
其中,美国1078家人工智能初创企业约有78700名员工,中国592家公司中约有39200位员工,只有美国的50%。
美国人工智能初创企业主要以1-10人和10-50人的团队为主,这种小型团队共759个,占据全美的70.41%,是美国AI初创公司的主力军;中国人工智能初创企业主要是10-50人的团队,总量384个,占据全国的64.86%。可以说,美国的小型创业团队规模比中国小。在需要同等技术的情况下,美国团队的平均能力和可创造价值高于中国团队。
由于AI产业大量的核心技术和资源掌握在科技巨头企业手里,因而引领AI产业发展的人才,除了高校,很多也聚集在科技巨头中。
在AI人才队伍建设方面,科技巨头内部出现了一些新变化,例如,专门设立AI研发团队,传统研究院也正向AI研究院转型,面向产品和技术应用项目的团队不断涌现。
各巨头还将挖掘AI人才的触手伸向了国外。例如拥有多伦多大学、蒙特利尔大学等AI研究重镇的加拿大,吸引了大量AI人才聚集,因此,谷歌、微软和Facebook先后在加拿大成立了AI实验室或办事处。
第二篇:全球AI顶级人才全景图
据估算,目前,全球AI研究及直接从业者约有30万人,主要分布在高校、AI新兴企业、科技巨头以及其他领域。其中,高校约10万人,产业界约20万人。
从这30万人中,我们筛选出其中各领域顶尖人才近千人进行了较为详细的调查和统计后,筛选出有代表意义的人才进行了“画像”,包括:学术领域204人,领先企业81人,科技巨头50人,投资人24人。
第2章 四大领域顶级人物画像
▌2.1 学术领域:顶级学者画像
筛选的一个重要指标是,他们自2006年至今,在人工智能领域顶级会议上发表过30篇以上论文,以及其他指标。
从统计来看,这些学者分布于全球4个大洲12个国家的53所高校,其中位于美国的学者最多,占总数的63%。
其中,有35位华人,占总数的17.2%,他们之中又有12位任教于清华大学、北京大学、上海交通大学、香港科技大学等国内高校。
就研究领域而言,这204位学者有的研究偏底层的机器学习、人工智能算法,也有的研究与现实应用更为贴近的计算机视觉、自然语言处理、机器人等方向。
2.1.1年龄:活跃学者以中青年为主
对比研究各领域学者年龄可知,人工智能、计算机视觉、机器学习、自然语言处理这四个领域学者年龄差距不大,而研究机器人的学者年龄偏大。
2.1.2性别:女性比例极低
在学者性别方面,男性学者在AI领域占比远超女性学者,男女学者比例约为7:1。女性学者主要集中在美国、加拿大以及英国。
虽然女性占比较少,但所取得的成就却巾帼不让须眉。例如MIT计算机科学和人工智能实验室(CSAIL)主任Daniela Rus,在机器人领域尤其是自动驾驶方面做出了杰出贡献。
2.1.3地区:主要分布于北美(略)
地区分布上,学者主要分散在北美、欧洲、中国、日本、新加坡、澳大利亚等国家。
2.1.4教育经历:学者们多毕业于CS四大名校
统计学者的毕业学校,发现他们100%都拥有博士学位,而他们之中的大部分都毕业于美国高校。其中从卡耐基梅隆大学、斯坦福大学、加州大学伯克利分校、麻省理工大这CS四大名校学走出的学者比较集中。
2.1.5专业背景:98%的学者拥有CS或EE博士学位(略)
2.1.6学界与业界:学界业界联系紧密
在AI的细分领域中,学者人数最多的领域是机器学习,其次是计算机视觉、机器人和自然语言处理。总体而言,学者越来越多地拥有双重身份:一方面在学校进行研究,另一方面也服务于企业,为人工智能领域做出更贴近产业的贡献。在其中,有52名学者在企业界担当首席科学家、技术总监等职位,有17名学者创办过自己的公司。可见人工智能领域学界和企业界联系紧密。
▌2.2 领先企业:顶级企业家画像
领先企业的数量和体量,也是衡量一个国家产业发展水平的重要标准。
从全球领先的人工智能企业出发,我们筛选出49家全球领先的人工智能企业作为分析主体,包括两家上市企业,独角兽企业,部分被巨头收购的AI创业公司和人工智能转型公司。他们的融资额均在一亿美元以上。
这些带领公司构成了全球人工智能产业的金字塔尖的企业级画像如何?
2.2.1全球超过一半领先企业诞生在美国
美国拥有领先企业数量位居第一,共有26家,占据总量的53%;
中国位居第二,拥有12家,占据总量的24%。总体来看,中美两国处于发展的第一梯队,与其他国家拉开较大差距。
2.2.2 创业场上80后独领风骚
顶级企业家的年龄相对年轻。约50%的企业家年龄不超过40岁,其勇气和魄力可见一斑。44%的人年龄分布在40岁到60岁,只有不到6%的全球领先企业创始人年龄在60岁以上。
2.2.3国籍:中美企业家数量最多,美国优势明显
从企业家的国家分布来看,81位企业家中拥有美国国籍的有43位,占据了一半以上,中国国籍的有17位,位于第二,英国有6位,位于第三。华人数量一共20位,约占总人数的1/4,华人在AI全球领域扮演着重要的角色。
2.2.4 高知云集,超过2/3的硕博占比(简)
▌2.3 科技巨头:顶级实验室负责人画像
科技巨头公司的研发团队是一股不容忽视的力量。我们从全球十大科技巨头中,统计了21个实验室,总计50位负责人。他们中超过90%的人拥有博士学历,男性为主占据总体90%,并且74%的人年龄在50岁上下。
2.3.1 AI巨头研发团队(略)
在收录人才水准在一定标准线之上的情况下,企业搜集的研发人才越多,研发能力就越强。
数据说明:以上仅为估算值
2.3.2 AI研发团队负责人画像
✦ 男性占绝对优势,60后和70后是主力军
巨头企业AI技术负责人中男性以90%的比例占绝对优势,且1960年代和1970年代出生的人为主力军(分别占36%和38%)。这不难理解,60后和70后在38-57岁之间,正当创造力和经验合力最好的年龄;而50后的资深人士渐渐退出工作一线; 80后年轻人才因欠缺团队管理经验而领导力不足。
✦ 中国人和美国人居多,英国人、印度人、法国人也不少
按出生地统计,巨头AI团队负责人的主要出生国家为中国(32%)和美国(26%),两国人数超过了总体的一半以上。另外,英国人(8%)、印度人(8%)、法国人(6%)的占比也显著高于其它国家。
但美国对AI人才的吸引力远高于中国。在中国工作的AI团队负责人的出生地全部为中国;而在美国工作的中国人却为数不少。
▌2.4 投资人
2.4.1 富有远见的投资机构
截至2017年,全球AI领域投资规模前13名的投资机构均由中美两国独占,其中中方占有4家投资机构,占总量的30.77%,美方占有9家投资机构,占总量的69.23%。单从投资机构数量上来看,美国投资界对AI领域的关注度要大大超越中国,显示其更加看好AI领域的发展前景。
AI领域投资规模前三名分别是IDG资本、创新工场、AME Cloud,其中IDG资本在AI领域的投资规模占到各个机构投资总额的25.6%。
2.4.2 投资人画像:(简)
从投资人国籍分布来看,24位投资人中美国国籍的有14位,占据了一半以上;中国国籍的有8位,位于第二;印度与马来西亚各有1位,并列第三。华人数量一共9位,占总人数的37.5%,华人在AI投资领域扮演着重要的角色。
AI领域投资人大部分为男性,24位投资人中仅有2位为女性,男性在AI领域占据着绝对优势。
▌2.5 本节数据来源及补充说明(略)
第三篇:中国AI人才市场为何一将难求
2017中国AI人才供求研究
当前,人工智能领域的竞争,主要体现为人才之争。我国AI人才以80后作为主力军,主要分布在北京、上海、深圳、杭州、广州,人才需求量也以这些城市居多。
根据相关数据显示,中国592家公司中约有39200位员工,而中国对于AI人才的需求数量已经突破百万,但国内AI领域人才供应量却很少,人才严重短缺,中小企业招聘更加困难。
此外,企业对于AI人才的招聘门槛相对较高,硕士成为最低门槛,偏爱双一流院校毕业生,专业以计算机、数学、物理为主。
第3章 AI人才需求现状
▌3.1 供不应求,人才需求爆炸式增长
▌3.2 京沪浙粤,北京需求呼声最高(略)
▌3.3 马太效应,中小企业数量多而需求小
▌3.4 企业重学历,大专学历仅占1.1%
第4章 AI人才供应现状
▌4.1 供应飙升,缺人现象却更加严重(简)
保守估计,截止到2017年10月,我国人工智能人才缺口至少在100万以上。而且,由于合格AI人才培养所需时间远高于一般IT人才,人才缺口很难在短期内得到有效填补。
▌4.2 学历分布,本科硕士为主(简)
▌4.3 谁有优势?双一流大学占九成(简)
此外,海外留学生也成为补给国内AI人才的重要一环。
从留学国家来看,人才分布高度集中,前五国留学生占到了总数的八成,依次为美国、英国、澳大利亚、新加坡和日本,其中仅美英两国占比就接近六成。
第四篇:中国AI企业如何拼抢AI人才?
第5章 对企业招聘的影响:高价求才
(简)
▌5.1 平均月薪2.58万,招聘薪资水涨船高
过去3年中,AI相关岗位平均招聘薪资正以每年近8%的速度增长。
到2017年,人工智能岗位平均招聘薪资已达2.58万元,远高于一般技术类岗位。
从薪资分布上看,近八成岗位招聘薪资超过2万元,五成职位招聘薪资突破3万元,还有1.9%的企业更是开出5万元以上月薪吸引顶级人才,而标注的月薪还只是薪酬福利的一部分。
我们注意到,几乎50%人工智能岗位的职位描述上会提到为员工提供股票期权,部分巨头更是会将解决户口作为吸引牛人的重要手段。
可以说,为争抢优秀人才倾其所有已成为所有AI公司正在做的同一件事情。
除了高昂的起薪外,AI人才薪资成长率也极为可观。数据显示,AI人才前5年的薪资复合增长率达到16.9%,远高于其他互联网职位。五年以上工作经验的AI人才月薪普遍在4万元以上,部分核心岗位人才,前3年薪资增幅更是突破25%。利用高薪资涨幅锁住AI人才,降低流失率已是业内的一个普遍做法。
▌5.2 高层亲自出动,争抢人才白热化 (略)
▌5.3 主动降低门槛:老鸟渐少新兵吃香
AI人才需求激增,合适牛人数量稀少,迫使企业不断降低工作经验门槛,甚至不惜从零培养人才。
数据显示,近2年,企业对AI人才工作经验要求不断下降。
2017年,有30.4%的AI职位工作经验要求为三年或以下,较2016年增长9.5个百分点,其中一年以内的实习生占比已达6.0%。较2016年提升4个百分点。
特别是创业公司,由于在抢人竞争中往往处于明显劣势,更倾向降低门槛来增加应聘该岗位的人才数量。
第6章 对人才应聘的影响:待价而沽
▌6.1 平均期望薪酬何以低于平均招聘薪资
▌6.2 语音识别、机器人领域大受追捧(略)
▌6.3 大厂有魅力,价低也要去
注:公司规模是指企业的整体规模,并非研发人员数量
▌6.4 AI人才如何胜出?掌握复合技能
我们观察到,AI人才掌握的技能宽度和深度均在逐渐提高。2017年求职的人工智能人才中,有68%的人掌握至少3种技能,较2015年增加了10个百分点。
目前简历中最常出现的技能包括spark、深度学习、算法研究、Hadoop,Python等。
第7章 AI对工作岗位的冲击与机遇
▌7.1 冲击:低技能职位难以为继
近些年来,在云计算能力指数级增长、数据驱动能力渐强的作用下,人工智能在多个领域方面取得了显著进步。技术的飞速发展,不仅改变了很多行业原有的生态环境,也搅乱了低端劳动市场人才结构,大批简单、重复性和标准化程度高的工种,面临被首先淘汰的命运。根据目前职位发展现状,我们列举了一些已从数据层面上反应出来正受人工智能冲击的职位。
7.1.1 录入员、速记员、文字秘书负增长
随着语音和图像识别精准度的飞速提升,人工智能在文本录入领域的发挥空间愈发广阔,留给录入员、速记员的工作机会及发展空间越来越窄。
7.1.2 翻译人才即将负增长
7.1.3 仓储管理出现36%的降幅
7.1.4 客服2017年首次呈现负增长
▌7.2 革新:高技能的新职位爆发式增长
▌7.3 热潮:大批技术人才转战AI
第8章 AI人才未来发展预测
(略)
第五篇:中国之路怎么走?
AI人才严重短缺。中国尤其短缺。中国未来的AI人才队伍如何建设,是个非常值得关注的问题。中国人工智能产业的崛起,不光需要依靠研发费用和研发人员规模上的持续投入,还应该加大基础学科的人才培养,尤其是在算法和算力领域,只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术的创新和突破。
国家已经将人工智能上升至国家战略的层面,并提出了三步走的战略目标,国家可以从政府、企业、高校、协会四条路径实现该目标。
政府主要是提供政策扶持,具体措施包括增加高校招生、吸引归国高端人才、政策倾斜、完善法律法规和行业标准。
企业则应把握产业大趋势,结合自身情况,找准发展方向,实施校企AI人才联合培养,建立长期人才储备,此外,企业可以开展企业公开课,帮助中小企业转型升级。
高校方面则应推动高校开放政策的实施,拥抱企业、提高AI科研经费,大力发展交叉学科。
协会应当促进协会发展,构建产学研合作新模式、完善交流平台,形成成果转化体系。
第9章 中国AI人才队伍建设路径探讨
(简)
▌9.1 政府层面
2017年7月份,国务院印发《新一代人工智能发展规划》,将新一代人工智能发展提高到国家战略层面,提出了分三步走的战略目标。到2030年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心,智能经济、智能社会取得明显成效。基于上述目标,有如下路径可供探讨。
9.1.1 增设人工智能一级学科,提高新生人才数量
人工智能的竞争是人才与技术的竞争,但我国目前人工智能人才远不能满足需求,基础理论成果与美国有一定差距。所以,人才是我国实现战略目标的重中之重。要增加人工智能人才,一方面可以通过自己高校培养,另一方面可以引进国外高端人才。
9.1.2 吸引归国高端人才,AI千人计划刻不容缓
国外引进人才方面,一是引进人工智能领域国际顶级科学家,二是引进优秀青年人才。通过特殊政策、渠道,充分利用现有的“千人计划”等人才计划,吸引海外人才,带回国外先进技术,促使中国产业技术突破。同时可以通过薪酬补贴等方式激励企业、高校引进人工智能人才。
9.1.3 给予人工智能产业适当政策倾斜
发展企业方面,需要国家给予企业政策方面的支持。对人工智能中小企业和初创企业给予优惠的财税政策,例如税收减免,研发费用加计扣除政策;鼓励传统企业例如家电家具产业向人工智能产业升级;针对行业巨头和“独角兽”企业,在保证安全的前提下实现数据开放,合作成立国家实验室等。
▌9.2 企业层面
9.2.1 把握产业大趋势,找准发展方向
企业应该了解国家的发展方向和战略方向,再和整个产业的发展方向相结合,结合自身优势,找准自身的发展方向。企业还可以通过参加人工智能业界的交流会来获取业界的最新动态。同时,也可以去美国硅谷等人工智能企业集中的地区取经。
9.2.2 联合高校培养AI人才,建立长期人才储备
校企合作是解决人工智能领域的应用型人才巨大缺口的重要方式,企业在业界的积累将为人才培养释放出巨大的能量。具体而言,企业可以与学校共建人工智能专业和课程,设置科学的人才培养体系与教学方案,参与学校实验室与配套环境的搭建,在供给一定数据的同时,发布部分需要解决的问题让学生与教授尝试去联合解决,在业界经验有机融入到学校中去同时,也提供学术为产业贡献的机会。
9.2.3 开展企业公开课,帮助中小企业转型升级
在人工智能领域,领先的巨头企业可以尝试开展企业公开课,向中小企业传递前沿理念和企业布局,担任产业转型升级的思想启蒙导师。在传播产品,扩大企业影响力和提升社会形象的同时,促进中小企业进步。
▌9.3 高校层面
9.3.1 推动高校开放政策实施,拥抱企业
学术要走出象牙塔,促进科技成果转化。
9.3.2 提高AI科研经费,大力发展交叉学科
科研经费对于科研项目的成果的影响不言而喻,提高AI科研经费可以支持成立更多项目组和课题组,让更多的教授和学生获得更大的发挥空间,促进科研成果的诞生和量产。
另一方面,人工智能及其相关专业应该大力加强和其他专业的联系,发展交叉学科。在不同知识体系和数据背景下,发现新东西,提出新思路,发觉新方法。利用人工智能的学习、筛查等能力帮助传统学科焕发新生。
▌9.4 协会层面(略)
结语:人工智能是机遇还是威胁
人工智能
厉害了!新西兰出现了世界上第一个机器人公务员
编者按:本文系网易智能工作室(公众号 smartman 163)出品
新西兰科学家发明了一种机器人“公务员“,其“大脑”由人工智能驱动。据新德里电视台报道,这位名叫“萨姆”的政治家能够回答市民提出的有关住房、教育和移民的问题,由一位名叫尼克·格里森的49岁的新西兰企业家所创造。
格里森在谈到他的新发明时说:“现在的政治模拟实践中有很多偏见。这些偏见似乎太多,以至于世界各国好像都无法解决诸如气候变化以及人类平等这些根本问题和多元复杂化问题。”
萨姆通过Facebook messenger回答问题,据 WHNT News 19报道,在被问及自己的问题时,萨姆这样说:“我有无限记忆存储量,所以我永远不会忘记或忽略你对我说的话。与人类政治家不同,在做决定时,我会毫无偏见地考虑每个人的立场。我也会实时反映新西兰人民最关心的问题。”
格里森预计,萨姆或能参加下一届新西兰大选。他说,人工智能机器人一直在学习如何通过“脸书即时通”和利用该公司网站上的一项调查问卷结果来回答人们的问题。唯一的问题是,人工智能目前还不能合法参加大选。
正如《亚洲科技》(Tech In Asia)报道的那样,格里森也承认,人工智能并不完美,因为开发者经常会把他们的偏见写入人工智能项目。
最近的一项研究发现,人工智能语言翻译工具已具有种族主义和性别歧视的偏见。正如《卫报》所报道的那样,当你考虑到这些电脑程序还无法像人类一样去有意识地摒弃这些偏见的时候,这会让你坐立不安。
这项研究作者之一、巴斯大学的计算机科学家乔安娜·布莱森说:“危险的是,如果你的人工智能系统中没有一个明确由道德观念驱动的部分,那就糟了。”这项研究的结果发表在《科学》杂志上。主要研究的是一种人工智能语言工具,即“文字嵌入”。
据《卫报》报道,该项目目前正在革新计算机处理语音和文本的方式。一些人声称,这项技术的下一步发展将使计算机拥有更多的感知能力,如常识和逻辑。
最近各大新闻头条中,经常能看见人工智能的身影。几天前,世界上第一个沙特阿拉伯机器人公民在迪拜接受了采访,她说,她应该也可以有自己的孩子。
此外,特斯拉和SpaceX太空探索技术公司的首席执行官艾伦·马斯克最近表示,人类目前只有5%到10%的几率阻止人工智能占领世界并摧毁人类。
(选自:inquisitr 编译:网易见外编译机器人 审校:薛雅芹)
人工智能
AI 技术能让老板更好地监督你……这是好事还是坏事?
编者按:本文作者 Dave Rocker 是管理咨询公司 Rocker Group, LLC 的执行合伙人,他在本文中探讨了人工智能技术在现代企业办公之中的应用,不仅能够提高员工的生产力,而且能够将老板和员工的关系引导向一个更有趣的方向。
在日常生活中,我们与 AI 可能有多次交互机会,但其中许多交互我们自己可能都没意识到。人工智能已经嵌入到应用非常广泛的一些消费技术中,许多消费者也都没注意到。因此,要说人工智能为现代办公注入了更强大的功能自然也不足为奇。以企业为重点的人工智能技术能够将老板和员工的关系引导向一个更有趣的方向,并且这一转型目前已经开始发生。
对于老板来说,最本质的一点在于确保企业发挥最大的潜力。从这一角度来看,人工智能在企业领域的未来看起来非常光明。因为人工智能技术能够简化操作流程,将企业的效率提升到前所未有的水平。而这要归功于先进的数据收集和分析技术,首席执行官们得益于此,到 2035 年就可以将企业生产力提高 40% 之多。技术的进步不断刷新人们的期望,企业工作领域的全面变革似乎也越来越有可能发生。
AI 提高生产力
建立在 AI 基础上的监督绝不是痴人说梦,实际上,这已经是现实了。技术先驱日立公司宣布公司安装人工智能工具的仓库生产力提高了 8%,这些人工智能工具主要用于分配任务并确定实现这些任务所需的新策略。除此之外,他们还能够适应各种变化。日立希望这些人工智能工具收集的信息很快就能应用于医疗保健、交通运输以及其他各行各业之中。
无论怎样,企业老板都有责任确保员工能够高效地利用自己的工作时间,而在这个方面,人工智能可以很好的发挥作用。科技公司 Veriato 致力于从事员工管理软件,能够监控所有电脑的使用情况。它的 AI 工具能够记录公司计算机上的所有活动,并对这些数据进行分析,以确定谁在工作上投入了更多的时间,谁又在工作时间偷懒。它甚至可以通过对电子邮件和通讯消息的解读来评估员工工作士气。
有些人可能会认为这样提高生产率的技术具有侵犯个人隐私的嫌疑,但只要是在公司时间里,你所做的与工作无关的一切都是在损失公司的资金。因此,从这一角度来看,雇主利用人工智能解决方案来确保员工的实际工作时间也是合理的一种做法。
但仍然无法破解沟通问题
从目前情况来看,人工智能可以通过简化流程来帮助大多数公司实现提升效率的目标,而不需要昂贵的审计和评估投入。但是,在将这些责任转移到软件的过程中,公司会面临损坏人际沟通和关系的眼中风险。
同其他任何关系一样,良好的工作关系也是建立在强有力的沟通基础之上。优秀的领导者知道如何通过灵活性,来细微平衡员工需求与公司指令之间的差异达到激励员工的目的。即便是采用最乐观的预测标准,人工智能距解决这些整体挑战至少还需要十年的时间。
要创建一种能够满足有效人际沟通所达到的细微性区别处理效果的人工智能技术,显然还有很长的路要走。但即便这样的一项技术发展到完善的程度,它是否真的就能满足所有员工的不同需求呢?至少现在,我们还很难想象一位人工智能老板能够针对某位员工来一次提升士气的谈话。即便是 2017 年所出现的最为先进的沟通工具,也无法具备像一位有经验的管理者所具有的对背景和细微差别的那种掌握能力。
而从另一方面来说,并不见得每一位老板都发挥了优秀的管理角色,随着软件解决方案达到惊人的数量(并且能力也在日渐增长),AI 至少可以取代那些拖员工后腿的坑爹老板。在你表现优秀的时候,一位人工智能老板无法拍拍你的后背表示肯定,但至少他也不会发表不当的评论或者是做出错误的指示去浪费彼此的时间。
未来发展方向
我们目前正处于 AI 变革的浪潮之中。无论好坏,无论是否紧要,这就是当前所发生的事情。而这些技术能否被采用将取决于一个因素:它们是否能够提高盈利?答案取决于数字,而不是人类被取代是否会引发任何不安的感觉。那老板与员工的关系是否适合通过 AI 来改善呢?与软件一样,这取决于编程。
原文链接:https://venturebeat.com/2017/11/18/ai-could-help-your-boss-track-your-performance-for-better-or-for-worse/
人工智能
拥抱你的AI新同事,虽然最后你可能被抛弃——欢迎来到AI协同工作纪元
编者按:我们已经站在人工智能时代的前沿。大部分人对此趋之若鹜,少数人高喊着警惕的口号,被视为杞人忧天的傻子。人工智能的浪潮正不可避免的袭来,它到底是怪兽还是福音?
恐怕事实上,它两者都是。日前Wired发布文章,深刻的揭露了人工智能从提高人类生产力到淘汰人类生产力的过程,可以说是一篇警世恒言。编者在不改变原意的情况下为您做如下编译:
去年秋天,谷歌翻译推出了一个崭新的、改进过的人工智能翻译引擎,声称它与人工翻译有时“几乎难以区分”。 Jost Zetzsche对此只能翻白眼。 这位德国人已经在翻译领域工作了20年,他一次又一次地听说他的行业将受到自动化进步的威胁。 每一次他都发现是夸大其词的炒作,Google翻译也不例外。他认为,这当然不是翻译的关键。
但是这次的结果出乎意料的好。谷歌在2016年花费了更多的时间改造其翻译工具,以人工智能为动力,并且通过这种方法,它创造了一些无比强大的东西。谷歌翻译一度以出产呆板但是尚说得过去的翻译而闻名,现在开始生产流畅而高度精确的散文。对于未经训练的人来看,它的这种输出与人类翻译几乎没有区别。一个1.5万字的纽约时报的故事称之为“AI的伟大觉醒”。引擎很快开始学习新的技巧,弄清楚如何翻译它以前没有遇到的语言:一旦它处理过英语对日语以及英语对韩语的翻译,它就可以弄清楚怎么处理韩语对日语的翻译。在上个月的Pixel 2发布会上,谷歌引入了它所承诺的无线耳机,可以实时翻译40种语言,将它雄心勃勃的议程进一步推向了前进的轨道,
自从IBM于1954年首次推出机器翻译系统以来,完美机器翻译的理念就抓住了程序员和公众的想象力。科幻小说家们抓住了这个想法,创造了大量这样的乌托邦幻想,从《星际迷航》的“宇宙通用译者”到《银河系漫游指南》中的巴比鱼。人工翻译的水准——翻译流利的散文并能够捕捉源文本中包含的人文意义,这是机器学习的圣杯:如果被实现,就意味着机器已经达到人的智能水平。谷歌在神经机器翻译领域的进步意味着圣杯在触手可及之处——随之而来的是人工劳动的过时。
由于翻译长期以来一直处于人工智能引发工作恐慌的第一线,因此人们并不很担心。有些人甚至很高兴。 对那些抓住人工智能工具潜力的人来说,生产力随着工作的需求而急剧上升。
把他们想象成穿着白领在煤矿里挖煤的金丝雀吧。目前,他们还在唱歌。 随着深度学习的萌芽,许多行业正在认识到,人工智能确实能够完成曾经被认为是专属于人类的任务。与司机和仓库员工不同,知识型员工不会立即面临流离失所的危险。但是,随着人工智能成为他们工作流程的重要组成部分,他们的工作正在发生变化,而且不能保证今天有用的人工智能工具不会成为未来的威胁。 这给人们提供了一个选择:放下自我,拥抱你的新AI同事,或被抛弃。
我们并不是生活在AI的黄金年代,而是生活在AI提高生产力的黄金年代。姑且称它为第一阶段。人工智能现在已经足够强大,能够对无数复杂的任务进行可靠的第一次尝试,但它还没有强大到看起来能造成威胁的地步。对于需要密集思考的主观性工作,我们仍然需要人类。
各行各业都在进行劳动力转移。 “华盛顿邮报”的内部人工智能,赫利奥格拉夫,去年发表了850多篇文章,人类记者和编辑为其加入了一些分析和丰富的细节。在图形设计中,人工智能工具现在可以生成设计初稿,最后执行交给人类设计师。在电影和出版方面,新的工具有望在海量良莠不齐的稿堆中找到下一个大热项目,使编辑从无休止的提交队列中解脱出来。这些人工智能工具就像年轻的助手一样,他们很有能力并且多产,但仍然需要一个经验丰富的经理来完成智能型重任。当然,这位经理要与机器一起工作才能获得好处。
在位于亚利桑那州的公司律师事务所Fennemore Craig,律师们跳上人工智能列车,试用了一家名为ROSS Intelligence的创业公司的新技术。ROSS使用IBM Watson和专有算法的组合,以AI驱动,是LexisNexis(律商联讯数据库)等工具的继任者:它纵览梳理数百万页的判例法,并在备忘录中以草稿形式记录其发现。这个过程聘请律师可能需要4天的时间才能完成,ROSS只需要大约24小时。 ROSS不会因疲劳或倦怠而受到影响:可以日以继夜的连续工作,不会因之感到痛苦。
ROSS的写作能力虽然也还可以,但并不是其突出的特点。据Fennemore Craig的三年级学生布莱克·阿特金森(Blake Atkinson)的说法,其写作水平大约为一年级法律学生的水平。(该公司的合伙人安东尼·奥斯丁更为慷慨:他认为, ROSS与一些第一年或第二年的同事一样好)。该工具生成干净的备忘录,虽然没法和海明威(世界级著名作家)的水平比,但它提供了一个功能性初稿,写满了适用的判例法摘要,一些基本的分析和一个简明扼要的结论。然后,由一个人类的律师进行更深入的分析和语言组织,让文本可以让人愉快地阅读——至少是一个律师可以愉快的阅读。奥斯汀说:“这可以让我们做有趣而富有成果的事情。 “老天,我不关心1885年的蒸汽机,我真正想做的事情是写点有趣而吸引人的东东西,法官和对方律师一听就知道他,‘我完了’。”
最终,像ROSS这样的工具几乎肯定会减少在探索过程中对人类律师的需求。目前尚不清楚这将如何改变雇用初级律师的情况,因为他们的工作常常是在在旧的判例法上埋头苦干。但是深入的分析和重要的写作仍然远远超出了ROSS的能力范围。对于创业公司来说,成功的关键在于,律师们不会害怕ROSS——毕竟,谁想来培训他们的替代品呢?这就是为什么首席执行官安德鲁·阿鲁达(Andrew Arruda)认为ROSS是一个生产力工具,而不是一个AI律师。它让律师能够为更多的客户服务,专注于他们工作中有趣的部分。奥斯汀更简洁地说:在ROSS的帮助下,他说:“你就像一个摇滚明星一样酷。”
对于许多翻译人员来说,人工智能助长了超人的生产力并不是什么新鲜事。当Alessandro Cattelan在2003年开始他的翻译生涯时,他每天翻译大约2000字能挣大约175美元。他使用计算机辅助翻译工具,偶尔基于他以前翻译过的短语提供建议——但翻译是一个非常手动的过程。今天,与人工智能协同工作,现在翻译人员可以在一天内要获得相当数量的金钱(调整通货膨胀率)需要翻译八千到一万字,Cattelan说。这个过程被称为机器翻译后编辑(PEMT),首先让机器先翻译一遍,然后引入翻译人员来整理语言,检查不正确的解释术语,并确保语调,上下文,翻译的文化暗示,这些都是重点。
Cattelan是Translated公司的运营副总裁,该公司发展基于AI的翻译工具。他说:“你必须弄清楚你的工作中的哪些部分可以被机器所替代,以及你作为一个人能够带来什么价值。”。由于Translated在4月份开始向其编辑翻译人员提供神经网络机器翻译,它的生产力显着提高,特别是德语和俄语等语言,过去由于其复杂的语法总需要额外的调整。
PEMT并不新鲜——至少在20世纪80年代以来,这一领域一直在不断发展。但随着神经网络机器翻译的出现,它正在被广泛采用。根据市场研究公司Common Sense Advisory的数据,未来几年,后期编辑的需求预计将比其他语言行业的增长速度更快,企业翻译在接下来的几年里可能会实现两位数的增长。Common Sense Advisory警告说,“即使语言行业以史无前例的速度增加新的翻译人员,目前的方法也不可能跟上这种增长水平”。有人认为,与机器翻译协同工作已经成为必须:根据机器翻译平台Lilt首席执行官Spence Green说,“机器翻译”现在是一个需求,而对于资历较老的翻译人员,他们甚至不需要使用翻译记忆软件。”
总部位于悉尼的翻译公司夏洛特·布拉斯勒(Charlotte Brasler)表示,在过去的一年里,机器翻译工具变得非常好用,如果不是使用这些工具会破坏保密协议(这是一个常见的障碍),她会欢迎这些工具。与能力很强的AI一起工作让她能够承担更多的项目,并腾出时间处理多有创造性的文本,而这些文件机器通常无法翻译出来。
但是,这一点也在发生变化:Brasler说,在过去的一年里,由于神经网络的加入,谷歌翻译在处理销售和营销材料方面表现出色,对这些材料的翻译涉及丰富多彩的语言和习语。当然,引擎并不是诗人,但是在人们长久以来认为机器不可能征服的领域,它正在迅速改善。对于那些用艺术来定义自己的劳动者来说,这是很难接受的。
技术的飞跃总是超出我们的承受范围。有人无法忍受与机器合作的想法,有人宁愿埋头于概念性学术期刊,假装没有任何变化发生。对于这些人来说,人工智能突飞猛进的增长是一场生存危机。当然,电脑可以筛选数据,甚至可以拼凑一个基本的句子——但它能写散文能让你流泪吗?它能分析一个成语的细微差别,或者发现下一个畅销小说家,或者说服最高法院的司法系统、改变他们的想法吗?
还没有,但机器可以帮助你到达那里。一些最具创意的行业开始尝试人工智能,他们遇到了一些挫折。今年四月,当“黑名单”(一个连接剧作人与制片方的网络)宣布将与一家名为ScriptBook的人工智能公司合作评估剧本,作家们群起抵抗。 Billions的执行制片人Brian Koppelman称这种工具“很冒犯人,粗暴武断”。黑名单迅速取消了与ScriptBook的合作关系,原本ScriptBook负责扫描角色分析,人口统计和票房成功的等脚本。虽然ScriptBook这家初创公司已经与两家主要的电影制片厂成功合作,但它的首席执行官Nadira Azermai表示,大多数电影制作人还没有能够克服对这个工具的恐惧。
“几年前,人们认为谈到创意时人类是安全的,因为人工智能不能像人类一样具有创造性,或者不如人类那么特别。但这不是真的,“阿塞迈说。当业内人士指责她创造一个工具来窃取工作时,她告诉他们,他们的工作确实受到威胁,但不是AI。相反,她对反对者说:“你的工作会输给那些知道如何与机器合作的人。如果你坚决的把头转向另一个方向,假装它不存在,你将会失去工作。”
一个类似的工具是StoryFit,其产品包括票房预测评分,剧本结构和风格分析以及故事情感组成阅读。正如TJ Barrack所解释的那样,他的工作室Adaptive Studios决不会仅仅因为在StoryFit报告中看到的东西而通过一个脚本——但是他的团队可能会考虑如何根据它了解到的东西来演变脚本。 Barrack说:“如果这显示我们可能因为某些东西在市场上出现问题,那么我们是否有办法可以改善这个故事? “我们或许可以调整一些情节点?我们可以在这里或那里添加更多的情感?”
人们刚刚开始摆脱人工智能的炒作,开始专注于AI驱动工具如何帮助他们的工作。 StoryFit首席执行官莫妮卡·兰德斯(Monica Landers)表示,她最近开始对自己公司的产品感到担忧。但她仍然要谨慎行事。当我问她公司的下一步行动时,她犹豫不决地回答:“如果我们谈论得太超前,还是会让人紧张。”她说。
毋庸置疑的是:如果我们放弃作为人的特质也就是创造力和直觉,我们就要先彻底重新思考人的意义是什么。这两种技能都暗示着某种不可知的想象力或第六感。但事实上,机器已经非常具有创造性,产生了令人惊讶的创新艺术作品:他们正在拍照,写音乐,创造超现实主义的艺术作品。因为他们开始与人类的经验深深共鸣,我们才需要担心。
华盛顿大学计算机科学教授,《The Master Algorithm》一书的作者佩德罗·多明戈斯(Pedro Domingos)说:“机器可以富有创造性,而且它们确实富有创造性。与此同时,直觉是一个更为棘手的问题:它需要更深入地了解人们如何思考以及世界如何运作。 Tech的最佳工程师们还没有想出如何用直觉装备AI;只要这种情况仍然存在,人类将在工作中继续占上风。律师需要了解她的目标读者以及他们可能拥有的所有偏见或倾向;译者需要对他所翻译的两种文化有一个细致入微的理解。多明戈斯说:“一旦这些任务中映射到现实世界,就是机器落后的地方,人们确实有优势——至少在可预见的将来。”
与我们的AI同事合作,使工作看起来变成了可疑的乌托邦。机器接管了那些吃力不讨好的工作,它们一直太过复杂难以自动化,直到最近。人类可以沉浸在工作中最有创意和价值的方面。但是,这是我们之前看到的一种模式——一种可能最终破灭的热潮。
当自动取款机在20世纪60年代后期首次推出时,很多人都惊讶地看到美国的银行出纳员人数增加了一倍,并保持了数十年的增长。为了摆脱现金的沉重任务,出纳员可以把注意力转向帮助客户解决账户问题或发放出纳员支票;结果,他们变得更有生产力。但是,经过这样的增长之后,银行出纳员的数量现在正在下降,这要归功于贝宝,智能手机银行等技术的累积效应,以及现金需求的下降。一段时间之后,技术终于从福音走向了“怪物”。对麻省理工学院“数字经济倡议”的联合主管安德鲁·迈克菲来说,银行出纳员的传奇故事是一个警醒寓言。他说:“技术可能在一段时间内增加了工作,创造了就业机会,那那并不意味着它将一直这样做。”“我们以前看过这种情况。”
但是目前,翻译人员,律师,医生,记者和文学代理人的工作是安全的。有人甚至会说他们的工作比以往任何时候都好。但我们现在发现自己处于一个奇怪的位置。我们不得不承认,人工智能正在迅速掌握我们以往视为机器禁区的任务。我们必须认识到,拥抱AI正在迅速成为在许多领域取得成功的先决条件。我们必须欢迎这些新的AI同事,在他们犯错的时候纠正他们——并且心里知道在某个时候,等我们教的足够多了,他们会一步步往上爬。
来源:雷锋网(公众号:雷锋网) 译 via Wired
原文链接:https://www.leiphone.com/news/201711/2SgoPa2ZUSFCWUiW.html
人工智能
英文阅读:(人工智能与人力资源)AI and human understanding will win the war for talent
简单讲就是AI人工智能与人力资源是一个好的结合点,尤其是招聘面试的时候,AI可以更好的帮忙搜索简历,进行人才搜寻。
同时面试的时候可以用人工智能的聊天机器人与候选人进行基础的面试管理安排以及与面试官进行协作。这块国内专注面试管理服务的优面宝已经开始这方面的工作。在前期职位分析与人才匹配阶段国内很多招聘服务机构也开始了各种的AI机器人的工作。
一切都在路上!人工智能在人力资源上的机会刚刚开始!
One of the most well known tropes in startup and tech culture is that your business is only as good as the team behind it. You can’t do anything without having a strong team, and the most important job for every manager is to hire quality talent that fits into the preexisting team dynamics. The HR and recruiting industry has dedicated itself to finding the people who are right for your company, but the process of skimming resumes and calling in highly rated candidates for an interview hasn’t changed for the past decade or so.
However, the newest trend, AI, is infiltrating all industries. While it might be a very good thing, you shouldn’t put all your hiring eggs in that AI basket. The best solution combines the strengths of HR and AI.
AI in the hiring process
We’ve all been hearing (and reading) about how AI will completely take over our lives. We’ve also been frightened into thinking it will soon replace all of us. While the job of getting people jobs will not be replaced by AI anytime soon, the tech can offer major improvements to the process.
To find the right talent, you need to have the ability to scan resumes quickly, read people immediately, and imagine the future of the applicant sitting in front of you. While some of that work can be replaced by AI, currently we are nowhere near an AI that can read people and assess their fit within the culture of the workplace. But some of the processes for finding the right people to join your company — such as immediately asking for more information, screening, and highlighting special candidates — can be done more quickly and efficiently with AI.
The integration of AI is not just about saving the company time and resources. It also saves time and uncertainty for the candidate. Getting back to top talent to set up an interview a week from now is the best way to have them move on to the next opportunity. If you can provide instantaneous feedback on every application, you get a leg up over other companies looking to snag that candidate, instead of wasting their time and missing a hire.
Onboarding with chatbots
The optimal way to maximize efficiency is combining human and technological resources. A chatbot can onboard new candidates as quickly as possible, as opposed to a form that might never get filled out. If you build a real AI chat bot, you can give candidates real-time feedback on their applications and ask questions to gather information before any interview is scheduled. The bot can even automatically analyze the candidate’s resume and information while onboarding and give them real-time responses relevant to them, making sure that the right people get called in for an interview and that the interviewer has the right information before even asking the first question.
After the chatbot has done its job and flagged the relevant candidates according to your parameters, the human element kicks in. Hiring managers don’t have to read the whole resume, supporting documents, and answers to a questionnaire because AIs can create a personalized summary of documents. The AI behind the hiring process can create a five-bullet summary of everything that’s important to know about each candidate. It can even set up the interview on its own. This means even small companies where C-level executives do the hiring don’t waste time on pre-interview screening, and interviewers have concise information about each candidate before they walk in the room.
The interview is where the human intelligence and expertise shine. Things like a candidate’s cultural fit, connection, and ability to work with others, along with the hiring manager’s overall impression of a person, are vital. Humans can focus on what they do best and automate the rest.
The future of AI in recruiting
At the end of the day, hiring a person doesn’t just hinge on facts and figures, it depends on who they are. And that’s something AIs still can’t assess. But the process of going through those facts and figures to see if someone is qualified can certainly be automated by an intelligent bot. The value is increased by the fact that you can onboard and convert candidates quickly, meaning top talent will be more likely to work for you and you’ll take less time filling important positions at your company. The combination of AI and human understanding is what hiring managers need to win the war on talent — and save a few dollars, as well as time.
Moritz Kothe is the chief executive officer of kununu, a place to find and share workplace insights.
扫一扫 加微信
hrtechchina