人工智能正在改变人力资源工作方式
新技术和人工智能可用于提高绩效评估,开放招生和员工发展。
New technologies and artificial intelligence can be used to improve performance appraisals, open enrollment and employee development.
作者:Alexander Alonso,SHRM-SCP
像“终结者”电影中看到的那些机器的兴起可能会给我们灌输对人工智能(AI)和自动化的健康恐惧,但明智的人力资源专业人员会关注当今的发展如何能够产生积极的变化 - 即更高的效率在日常运营中和更好的员工体验。
现代技术(从简化流程的应用程序到改善通讯的机器人)正在改变我们的工作方式,这并不奇怪。然而,令人震惊的是,他们扩散到工作场所的速度很快。
以下是三个已被企业完全接受的AI示例,它们正在改变我们实践HR的方式:
众包和性能数据。为了更好地评估,商业思想领导者鼓励使用来自各种来源的及时数据。例如GloboForce这样一家员工识别软件供应商,声称众包信息比传统的评估方法能够以更定期的间隔提供更全面的性能图片。
乍一看,这可能看起来很直观。但是许多人力资源专业人士对这种软件在考虑到大量信息的性能数据流方面的准确性持怀疑态度。例如,会议结束后,Karma Notes向与会者询问个人作为团队成员的有效性。令人生畏的是,应用程序在每次会议后提出了这个问题。更重要的是,这个过程引发了人们提供反馈动机的问题。有些可能是由隐藏的议程驱动的。这项技术正在得到进一步完善,以收集与截止日期和预算有关的信息。近100家财富1000强公司正在试用这种众包的表演系统。这比以往任何时候都更加重视人力资源专业人员,以更好地理解数据管理和分析,
机器人和福利问题。如果你像大多数人力资源从业人员一样,只需要在开放的招生季节中生存下去,你很高兴。但那些幸运地通过人力资源信息系统(HRIS)来利用人工智能的人通常并没有那么糟糕。例如,今天的一些基于HRIS的聊天机器人可以自动回复员工的福利问题,并为您的员工量身定制解决方案。这意味着您花费更少的时间进行查询。虽然这些工具从来都不是完美的,但大多数使用的是一种AI,它使得信息交付非常可定制。要充分利用这一点,您必须建立真正动态的面向消费者的问答数据库,以反映您的员工和他们的偏好。
算法和学习偏好。近年来,我们看到了无数支持学习和发展活动的技术的兴起。其中最有趣的是使用AI来创建交互式测试和评估以匹配考生的个人学习风格和参与度的应用程序。与Lumosity的互动式大脑游戏类似,这些工具可在用户学习时产生无数的数据点,包括他们的步伐和学习风格。对于人力资源部门来说,这些创新突出了对员工发展的定制学习路径和数据驱动方法的需求。
很明显,人工智能在人力资源中的作用越来越大,这代表了您通过数据实现价值的机会。有些人会哭,“机器正在接管!”事实是,机器已经在这里。我们需要确定如何最好地使用它们。
SHRM-SCP的Alexander Alonso是SHRM知识发展高级副总裁。
以上由AI翻译完成,仅供你参考。HRTechChina倾情奉献,转载请注明HRTechChina
以下为英文原文:
The rise of machines like those seen in the “Terminator” movies may instill in us a healthy fear of artificial intelligence (AI) and automation, but wise HR professionals will focus on how today’s developments can give rise to positive changes—namely, greater efficiency in day-to-day operations and a better employee experience.
It’s no surprise that modern technologies—from process-streamlining apps to communication-improving bots—are altering the way we work. What is shocking, however, is the fast pace of their diffusion into the workplace.
Here are three examples of AI that have been fully accepted in businesses today and are changing the way we practice HR:
Crowdsourcing and performance data. For better appraisals, business thought leaders encourage the use of timely data from a wide array of sources. Companies such as GloboForce, an employee recognition software provider, claim that crowdsourced information provides more-holistic pictures of performance at more-regular intervals than traditional appraisal methods.
At first glance, that may seem intuitive. But many HR professionals are skeptical about the accuracy of such software with regard to performance data flow, which takes into account large volumes of information. For instance, after a meeting, Karma Notes asks fellow attendees about an individual’s effectiveness as a team player. What’s daunting is that the app poses this question after every meeting. What’s more, the process raises questions about people’s motivations for providing feedback. Some may be driven by a hidden agenda. The technology is being further refined to gather information related to deadlines and budgets, too. Almost 100 Fortune 1000 companies are piloting this type of crowdsourced performance system. More than ever, that puts the onus on HR professionals to better understand data management and analytics, and to account for relationship dynamics when interpreting such records.
Bots and benefits questions. If you’re like most HR practitioners, you’re happy just to survive open enrollment season. But those fortunate enough to leverage AI via their HR information systems (HRIS) usually don’t have it so bad. Some of today’s HRIS-based chatbots, for example, can automatically reply to employees’ benefits questions with answers tailored to your workforce. That means you spend less time fielding inquiries. While these tools are never perfect, most use a form of AI that makes information delivery extremely customizable. To take full advantage of that, you must build truly dynamic, consumer-oriented Q&A databases that reflect your workers and their preferences.
Algorithms and learning preferences. In recent years, we’ve seen the rise of countless technologies that support learning and development activities. Among the most interesting are apps that use AI to create interactive tests and assessments to match test takers’ personal learning styles and engagement levels. Similar to Lumosity’s interactive brain games, these tools generate countless data points about users as they learn, including their pace and learning style. For HR, such innovations highlight the need for customized learning paths and data-driven approaches to employee development.
It’s clear that AI’s increasing role in HR represents an opportunity for you to drive value through data. Some would cry, “The machines are taking over!” The truth is that the machines are already here. It’s up to us to define how best to use them.
Alexander Alonso, SHRM-SCP, is senior vice president for knowledge development at SHRM.
人工智能如何促进人力资源分析 How AI Can Boost HR AnalyticsMarianne Chrisos
How AI Can Boost HR Analytics
使用AI技术改善您的人力资源报告。
了解如何使用AI来更有效地衡量您的人力资源指标。
随着人工智能技术的不断发展,也许你会想知道在人力资源部门是否有人工智能的地方。人工智能在人力资源分析中的作用是什么?我们花了一些时间专门研究人力资源分析的好处,以及人工智能如何帮助促进人力资源部门的报告和分析,以更多地了解组织的健康和效率。
每位经理应该知道的人力资源分析类型
分析可能不是HR谈到的第一件事。您的具体人力资源需求可能更多地集中于遵守规则条例或员工福利。以下是一些人力资源分析示例,有助于说明为什么报告在每个部门(包括人力资源部门)都很重要。
员工流动率:人力资源部门和企业可能会有一个偶然的想法,即他们的组织内有多少员工流失 - 也就是说,人们退出的频率如何,或者公司必须重新雇佣相同职位的频率。如果一位人力资源经理不断发布需要销售人员的广告,这可能意味着销售人员正在放弃 - 或者销售额在增长,他们需要更多人来满足需求。为了真正了解其原因是由于营业额还是其他原因 - 以及衡量员工翻身的频率,这可能会告诉您关于商业或文化的一些事情 - 您需要使用分析来衡量。
申请人的质量和数量:你的招聘信息有多好?你的企业声誉有多好?你可以找到这些问题的答案 - 并且如果你发现答案“不是很好”,通过分析你的工作发布的申请人数,特别是申请人的质量,可以帮助确保做出调整。使用报告软件可以衡量您的候选人是否符合质量要求,并报告申请人的属性。他们有相同行业或职位的经验吗?他们有帮助组织发展或从事大型项目的历史吗?分析可以帮助您在回答这些问题的同时节省时间。
文化:虽然上述两种分析可以让您对企业文化有所了解,但具体的文化分析对于了解您的企业的健康状况非常重要。使用人力资源工具,如自我报告软件和人力资源调查,您可以编辑和分析数据,分享员工对文化态度的共同点。
人工智能在人力资源分析中的作用
人工智能是一种改变游戏规则的技术,因为它能够分析大量数据并找到模式,甚至做出预测。人力资源分析工具从人工智能中受益,因为人力资源部门有大量原始数据可供使用,人工智能可帮助快速有效地对这些数据进行分类。人才管理系统可以结合人工智能来分析简历关键字和其他指标,以帮助预测潜在招聘信息的最佳人选,从而为人力资源招聘人员节省大量时间。AI还与其他HR数据分析工具一起工作,以推荐培训领域或预测潜在的营业额。
以上AI翻译完成。
作者:Marianne Chrisos
Born in Salem, Massachusetts, growing up outside of Chicago, Illinois, and currently living near Dallas, Texas, Marianne is a content writer as a company near Dallas and contributing writer around the internet. She earned her master's degree in Writing and Publishing from DePaul University in Chicago and has worked in publishing, advertising, digital marketing, and content strategy.
Josh Bersin:2018年人力资源技术:比以往更加智能化 HR Technology for 2018 - More Intelligent than Ever
几乎每一位与我交谈的人力资源供应商都声称拥有基于人工智能(AI)的解决方案,预测分析,聊天机器人或其他形式的算法解决方案,以使HR更好。
正如我所了解的所有这些产品,并开始看到他们的行动,让我给你什么寻找提示。
在招聘市场上,数据确实在推动我们的未来。由于社交网络的无处不在以及数十种智能采购和评估工具,我们的研究表明,人工智能正在创造巨大的价值。在您寻找新的招聘工具(采购,候选人评估,智能聊天机器人和移动招聘平台)时,请供应商向您展示其AI如何工作。询问如何作出决定,以及它可能适用于您的例子。这些供应商远远领先于学习曲线,价值将变得清晰。
在面试管理中,也越来愈多的工具开始提供候选人与面试官的协调沟通,自助服务等,比如优面宝,通过自动化的协调沟通机制安排好候选人的面试时间等。
在学习和发展市场上,现在很多学习管理系统(LMS)平台,学习体验平台和微型学习平台都使用人工智能和算法解决方案来推荐内容,策划内容,并通过最合适的内容来指导学习者学习。这些供应商中的许多都有丰富的经验分析通过内容的最佳路径,正确的时间来查看下一个内容,甚至正确的学习模块来查看您的信心,你的理解的主题。学习活动数据现在可以通过体验API或xAPI(一种记录和跟踪学习过程中点击的所有内容的方式)获得,因此所有这些供应商都变得“聪明”。
在员工敬业度和调查市场,同样的AI波即将到来。一系列供应商的产品开始作为参与和脉搏调查工具,现在提供文本分析,情感分析,词云和员工情绪的智能评估。他们中的一些人可以测量信任网络,并使用组织网络分析来识别网络中的可信任人员,甚至指出可能存在欺诈或不良行为的领域。虽然这些软件都不是完美的,但它比单独阅读每条评论要好,可以让管理者更好地了解他们如何与同行进行对比。
在绩效管理市场中,持续绩效管理软件现在通过查看您在工作中获得的反馈模式,提供活动流,公共和私人评论以及组织网络分析。到时候,这些平台会向管理人员推荐学习和辅导,有些已经这样做了。
在员工自助服务和案例管理方面,平台也变得更加智能。您现在不仅可以在线(或通过您的消息系统)与您的员工系统进行聊天,还可以发送消息(“星期五预订我的休假日”),系统将执行交易。很快,它会向你推荐什么课程,如何放慢和放松以及其他员工福利。
我可以继续下去。市场上大多数人力资源工具都包含“人工智能”和“智能”这两个词,越来越多的人开始工作。
虽然这一切都是积极的,而且肯定会让我们的工作更轻松,但是让我也给你一个警告:AI不是魔法; 它只是高度精炼的统计和数学模型,试图根据大量数据预测和推荐行动。如果你没有足够的数据,AI可能没有那么有用。所以听起来很令人兴奋,我建议你让供应商给你一个真实世界的演示,并尽可能多的参考。
在我看来,AI,预测分析,情感分析,视觉识别和自然语言界面的成熟速度比我们预期的要快得多。所有这些都将影响我们的人力资源技术。只要确保你买的东西确实符合你的需求,并且你所实施的“智能”在你的组织需要的领域是聪明的。
Josh Bersin是德勤咨询(Deloitte Consulting LLP)Bersin™的负责人和创始人。本文件中使用的“Deloitte”是Deloitte LLP的子公司Deloitte Consulting LLP。请参阅www.deloitte.com/us/about,了解我们法律结构的详细说明。根据公共会计规则和条例,某些服务可能无法向证明客户提供。
以上由AI翻译,下面是英文原文:
Almost every HR vendor I talk with claims to have artificial intelligence (AI)-based solutions, predictive analytics, chatbots or some other form of algorithmic solution to make HR better. As I've learned about all these products and started to see them in action, let me give you tips on what to look for.
In the recruitment market, data is really driving our future. Thanks to the ubiquitous nature of social networks and dozens of intelligent sourcing and assessment tools, our research shows, AI is creating significant value. As you search for new recruiting tools (sourcing, candidate assessment, intelligent chatbots and mobile recruiting platforms), ask the vendor to show you how its AI works. Ask to see how decisions are made and for examples of where it might apply to you. These vendors are well ahead of the learning curve, and the value will become clear to you.
In the learning and development market, many learning management system (LMS) platforms, learning experience platforms, and micro-learning platforms now use AI and an algorithmic solution to recommend content, curate content and guide learners through the most appropriate content to learn. Many of these vendors have extensive experience analyzing the best path through content, the right time to view the next content and even the right learning module to view based on your confidence in your understanding of the subject matter. Learning activity data is now available through the Experience API, or xAPI (a way to record and track everything you click on while learning), so all these vendors are becoming "intelligent."
In the employee engagement and survey market, the same AI wave is coming. A flurry of vendors whose products started as engagement and pulse survey tools now provide text analytics, sentiment analysis, word clouds and intelligent assessment of employee sentiment. Several of them can measure trust networks and use organizational network analysis to identify trusted people in your network and even point out areas of potential fraud or bad behavior. While none of this software is perfect, it's better than trying to read every comment individually and can certainly give managers a better idea of how they stack up against their peers.
In the performance management market, software for continuous performance management now provides activity streams, public and private comments, and organizational network analysis by looking at the patterns of feedback you get on the job. In time, these platforms will recommend learning and coaching to managers, and some do this already.
In the area of employee self-service and case management, the platforms are also getting smarter. Not only can you now chat with your employee system online (or through your messaging system), you can send it messages ("Book my vacation day on Friday") and the system will perform a transaction. Soon, it will actually make recommendations to you on what courses to take, how to slow down and relax, and other employee benefits.
I could go on and on. It feels like the words "AI" and "intelligent" have been included on most HR tools in the market, and more and more of this is starting to work.
While all this is positive and definitely making our work lives easier, let me also give you a warning: AI is not magic; it is simply highly refined statistics and mathematical models that try to predict and recommend action based on a mass amount of data. If you don't have enough data, the AI may not be as useful. So as exciting as it sounds, I recommend you ask the vendor to give you a real-world demo and talk with as many references as you can.
There's no question in my mind that AI, predictive analytics, sentiment analytics, visual recognition and natural language interfaces are maturing far faster than we expected. All of this will impact our HR technologies. Just make sure that whatever you buy really fits your needs and that the "intelligence" you implement is intelligent in the areas of need for your organization.
Josh Bersin is principal and founder, Bersin™, Deloitte Consulting LLP. As used in this document, "Deloitte" means Deloitte Consulting LLP, a subsidiary of Deloitte LLP. Please see www.deloitte.com/us/about for a detailed description of our legal structure. Certain services may not be available to attest clients under the rules and regulations of public accounting.